9. Modal Logic & Verification

David Pereira José Proenca Eduardo Tovar
RAMDE 2021/2022

Requirements and Model-driven Engineering

CISTER - ISEP
Porto, Portugal

https://cister-labs.github.io/ramde2122

https://cister-labs.github.io/ramde2122

Recall: What'’s in a logic?

A language

i.e. a collection of well-formed expressions to which meaning can be assigned.

A semantics
describing how language expressions are interpreted as statements about something.

A deductive system
i.e. a collection of rules to derive in a purely syntactic way facts and relationships among
semantic objects described in the language.

Note
= a purely syntactic approach (up to the 1940's; the sacred form)

= a model theoretic approach (A. Tarski legacy)

2/38

Semantic reasoning: models

= sentences

= models & satisfaction: I = ¢

= validity: | ¢ (¢ is satisfied in every possible structure)

= logical consequence: ® |= ¢ (¢ is satisfied in every model of ®)

= theory: Th® (set of logical consequences of a set of sentences ®)

3/38

Syntactic reasoning: deductive systems

Deductive systems

= sequents

= Hilbert systems

= natural deduction
= tableaux systems

= resolution

. and
- S ON o)
n I—(b

4/38

Soundness & completeness

= A deductive system - is sound wrt a semantics |= if for all sentences ¢

o = Fo¢
(every theorem is valid)

= ... complete ...

Fé¢ = Fo

(every valid sentence is a theorem)

5/38

Consistency & refutability

For logics with negation and a conjunction operator

= A sentence ¢ is refutable if —¢ is a theorem (i.e. - —¢)
= A set of sentences P is refutable if some finite conjunction of elements in @ is refutable

= ¢ or ® is consistent if it is not refutable.

6/38

M E o

= Propositional logic (logic of uninterpreted assertions; models are truth assignments)

= First-order logic (logic of predicates and quatification over structures; models are

relational structures)

= Modal logics

7/38

Modal Logic

Modal logic (from P. Blackburn, 2007)

Over the years modal logic has been applied in many different ways. It has been used as a tool
for reasoning about time, beliefs, computational systems, necessity and possibility, and much

else besides.

These applications, though diverse, have something important in common: the key ideas they
employ (flows of time, relations between epistemic alternatives, transitions between
computational states, networks of possible worlds) can all be represented as simple graph-like

Sstructures.

Modal logics are

= tools to talk about relational, or graph-like structures.
= fragments of classical ones, with restricted forms of quantification ...

= ... which tend to be decidable and described in a pointfree notations.
8/38

Basic Modal Logic

Syntax

¢ = p | true | false | =@ | 1A G2 | p1 =2 | (Mo | [m]o
where p € PROP and m € MOD

Disjunction (V) and equivalence (<) are defined by abbreviation.

The signature of the basic modal language is determined by sets:
- PROP of propositional symbols (typically assumed to be denumerably infinite) and
- MOD of modality symbols.

9/38

The language

Notes

= if there is only one modality in the signature (i.e., MOD is a singleton), write simply {¢
and 0o

= the language has some redundancy: in particular modal connectives are dual (as
quantifiers are in first-order logic): [m] ¢ is equivalent to —=(m) —¢

Example
Models as LTSs over Act.
MOD = Act (sets of actions)

“

(a) ¢ can be read as “it observe a, and ¢ must hold after that."

[2] @ can be read as “if it observes a, then ¢ must hold after that.”

10/38

Semantics

M,s = ¢ — what does it mean?

Model definition When MOD =1
A model for the language is a pair 9t = (£, V), where - and instead of
» £=(5MOD,—) is an ()¢ and []¢
= S is a non-empty set of states (or points) - instead of
= MOD are the labels consisting of modality symbols £ =(5,MOD, —)
= — C S x MOD x S is the transition relation . instead of
» V:PROP — P(S)is a : — s C SxMODxS

11/38

Semantics

Safistaction: for a model 9t and a point s

M, s = true
M, s B~ false
M,sEp
M, s = o
M, s = d1 A g2
M, s = ¢1— ¢2
M, s = (m) ¢
M,s = [m]¢

iff
iff
iff
iff
iff
iff

s € V(p)

M, s = o

M,s = ¢1 and M, s = ¢

M, s = o1 or M, s = o

there exists v € Sst s °5 v and M, v = ¢
forallve Ssts > vand M, v = ¢

12/38

Semantics

Satisfaction
A formula ¢ is
L] N if it is satisfied at some point of 91
. in M (M = ¢) if it is satisfied at all points in M
. (= ¢) if it is globally satisfied in all models
. of a set of formulas I' (I' = ¢) if for all models 9t and all points

s, if M, s =T then M, s |= ¢

13/38

Example: Hennessy-Milner logic

Process logic ()
= PROP =0 (hence V = 0)
= S =P is a set states in a labelled transition system, typically process terms

= each subset K C Act of actions generates a modality corresponding to transitions labelled

by an element of K

Assuming the underlying LTS as the model's LTS,

satisfaction is abbreviated as

p):<K>¢ iff qu{p/‘pi}pl/\aeK} q):Qb

p): [K](b Iﬂ: VqG{p/\pim/ A QEK} ° q IZ ¢
14/38

Example: Hennessy-Milner logic

Process Logic Syntax

¢ = true | false | =¢ | d1 A G2 | p1 =2 | (K)o | [K] @
where K C Act

Ex.9.1: Prove:
s—=b 5 1. S = [a, b, c] ((b, c) tt)
/ 2. S, = [a] ((B) tt A (c) tt

I

/ \ S E [B][e] (@) tt v (b) tt)

S ——F— S 5. 51 = [b][c] ((a) tt v (b) tt)
6. 51 = [a, b] (b, ¢) ((a) tt)

)
511 [a] ((b) tt A (c) tt)
)
)

15/38

(P, <) a strict partial order with infimum 0
le., P={0,a,b,c,...},

a — b means a < b,

a<band b < cimpliesa<c

0 < x, for any x # 0

there are no loops

some elements may not be comparable

. if x is a maximal element of P
. iff ...
. iff ...

16/38

Temporal logic

= (T,<) where T is a set of time points (instants, execution states , ...) and < is the
earlier than relation on T.

= Thus, O (respectively, Op) means that ¢ holds in all (respectively, some) time points.

17/38

Examples IV

Epistemic logic (J. Hintikka, 1962)
= W is a set of agents
= o |=[Ki] ¢ means that agent i always knows that ¢ is true.
= o = (K;) ¢ means that agent / can reach a state where he knows ¢.

» a k= (—[Ki] ¢) A (—[Ki] —¢) means that agent i does not know whether ¢ is true or not.

Many variations exist, modelling knowledge and believes, knowledge of who knows what,

distributed knowledge, etc.

18/38

Examples V

Deontic logic (G.H. von Wright, 1951)
= Obligations and permissions: must and can do.
* o =0 ¢ means ¢ is obligatory.

= af= O ¢ means ¢ is a possibility.

Each logic accepts a different set of principles or rules (with variations), that makes their
interpretation different.

19/38

Exercise

Ex. 9.2: Express the properties in Process Logic Recall syntax
= inevitability of a:
¢ 1= true
= progress (can always act): | false
= deadlock or termination (is stuck): | —¢
| é1 A b2
. i ?
Ex.9.3: What does this mean? | 1 — b2
1. (—)false | (K)o
2. [—]true | [K]¢

—" stands for Act, and “—x" abbreviates Act — {x} here K C Act
w =

20/38

Exercise

Ex. 9.2: Express the properties in Process Logic Recall syntax
= inevitability of a: (—) true A [—a] false
¢ = true
= progress (can always act): | false
» deadlock or termination (is stuck): | —¢
| é1 A b2
0 H ?
Ex.9.3: What does this mean? | 61— ¢o
1. (—)false | (K)o
2. [—]true | [Kl¢

—" stands for Act, and “—x" abbreviates Act — {x} here K C Act
w =

20/38

Express the following using Process Logic

Ex. 9.4: Coffee-machine

1. The user can have or
2. The user can have but not
3. The user can have after having 2 consecutive

Ex.9.5: a's and b’s

1. It is possible to do a after 3 b's, but not more than 1
2. It must be possible to do 2 after [doing 2 and then 5].
3. After doing a and then b, it is not possible to do

21/38

Express the following using Process Logic

Ex. 9.6: Taxi network

= @9 = In a taxi network, a car can collect a passenger or be cated by the Central to a
pending service

= ¢ = This applies only to cars already

s ¢ = If a car is allocated to a service, it must first collect the passenger and then the
route

= ¢3 = On detecting an the taxi becomes inactive

= ¢4 = A car is not inactive

22/38

Process Logic + regular expressions

Process Logic Syntax

¢ = true | false | ~¢ | 1A G2 | 1= ¢2 | (E)o | [E]¢

where £ is a

More expressive than Process Logic. Used by mCRL2.
Examples
= “(a.b.c)true” means “(a)(b)(c) true"
= “[a.b.c]false” means “[a][b][c] false”
= “(a*.b) true” means that b can be taken after some number of a's.

= “(—*.3) true” means that a can be taken

“[—*](a + b) true” means it is possible to do a or b
23/38

Exercises

Ex.9.7: What does this Ex. 9.8: Express using logic
mean? 1. The user can only have after the is
1. (=) true pressed.
2. [=*](=) true 2. The used must have after the is
pressed.
3. [=*.a](b) true
3. It is always possible to the coffee machine.
4. [—*.send]
((—send)*.recv) true 4. It is always possible to reach a state where the coffee

machine can be

5. It is never possible to right after pressing
the latte button.

24/38

mCRL2 Tools

Slides 10:
https://cister-labs.github.io/ramde2122/slides/10-mcrl2.pdf

25/38

https://cister-labs.github.io/ramde2122/slides/10-mcrl2.pdf

Bisimulation and modal equivalence

Bisimulation (of models)

Definition
Given two models 9t = (£, V) and D' = (£', V'), a bisimulation of £ and £’ is also

a bisimulation of 9t and IV if,

whenever s R s/, then V(s) = V/(s)

26/38

Invariance and definability

Lemma (invariance: bisimulation implies modal equivalence)
Given two models 9t and 2, and a R between their states:

two states s, s’ are related by R (i.e. sRs'),

s, s’ satisfy the same basic modal formulas.
(ie, forall ¢: M,s=o¢ < M, s' = ¢)

Given 2 models 99 and MV, if you can find ¢ such that

M = ¢ and M’ |~ &

(or vice-versa) then they are NOT bisimilar.

27/38

Exercise

Ex. 9.9: Bisimilarity and modal equivalence

Consider the following transition systems:

-

172 -

O<—WwW——>0

Give a modal formula that can be satisfied at point 1 but not at 3.

28/38

Exercise

Ex.9.10: Find distinguishing modal formula

coin coin
.
1) — po p1 — Qo . tea q1
"_/ "_/
coffee coffee
5 3/ P1 —>b P2 a b
) —R— — qo q1 92
b b
a/> P1——— p2 a P2 q2
3 — Po — o ——— q1
) A P ——(—— P @

29/38

Richer modal logics

Richer modal logics

can be obtained in different ways, e.g.

= axiomatic extensions
= introducing more complex satisfaction relations

= support novel semantic capabilities

Examples

= richer temporal logics
= hybrid logic

= modal p-calculus

30/38

Temporal Logics with / and S

Until and Since

M w = odUY iff there exists v st w < v and M, v |= ¢, and
forall ust w < u < v, one has M, u = ¢

MwE= oSy iff there exists v st v < w and 9, v = 1), and

forall ust v < u< w, onehas M, u = ¢

= Defined for temporal frames (T, <) (transitive, asymmetric).
= note the 3V qualification pattern: these operators are neither diamonds nor boxes.
= More general definition for other frames — it becomes more expressive than modal
logics.
31/38

Exercise

Temporal logics - rewrite using I/
L <>17Z) =
[] qu =

32/38

Exercise

Temporal logics - rewrite using I/
s O =ttty Y
[] qu =

32/38

Exercise

Temporal logics - rewrite using I/
s Q= ttY Y

32/38

Linear temporal logic (LTL)

¢ = true|p| o1 A2 | =0 | Od | or1U ¢2

mutual exclusion d(—c V)

liveness O00c A OO

starvation freedom | (O0wy — OOc1) A (OOwr — OOcy)
progress O(wy — Qcr)

weak fairness O0Owr — O%a
eventually forever OOwy

= First temporal logic to reason about reactive systems [Pnueli, 1977]
= Formulas are interpreted over execution paths

= Express linear-time properties 33/38

Computational tree logic (CTL, CTL¥*)

state formulas to express properties of a state:

b = true | PAD| =D | Jy | Vo

path formulas to express properties of a path:

P = OF|dUW

mutual exclusion VO (- Vo)
liveness VOVOoa AV OVOEG
order VO(aVVO a)

= Branching time structure encode transitive, irreflexive but not necessarily linear flows of
time
= flows are trees: past linear; branching future

34/38

Hybrid logic

Motivation
Add the possibility of points and reason about their
Compare:

O(rap) A O(rAg) — O(pAa)
with

O(iAp) A O(ing) — O(pAa)
for (a)
Syntax

p = | p| (Mo lmel|ilCe

where and m € MOD and

35/38

Hybrid logic

Nominals i
= Are special propositional symbols that hold exactly on one state (the state they name)

= |n a model the valuation V is extended from
V : PROP — P(W)

to
V :PROP — P(W) and V :NOM — W

where NOM is the set of nominals in the model

= Satisfaction:

iff w = V(i)

36/38

Hybrid logic

The ©; operator

M, s = true
M, s B~ false
M,sEp
M, s = o

M, s = d1 A g2
M, s = ¢1— ¢2
M, s = (m) ¢
M,s = [m]¢

iff
iff
iff
iff
iff
iff

s € V(p)

M, s = o

M,s = ¢1 and M, s = ¢

M, s = o1 or M, s = o

there exists v € Sst s °5 v and M, v = ¢
forallve Ssts > vand M, v = ¢

[u is the state denoted by] 37/38

Hybrid logic

Summing up

= basic hybrid logic is a simple notation for capturing the bisimulation-invariant fragment of
first-order logic with constants and equality, i.e., a mechanism for equality reasoning in

propositional modal logic.

= comes cheap: up to a polynomial, the complexity of the resulting decision problem is no

worse than for the basic modal language

38/38

	Recall: What's in a logic?
	Modal Logic
	Bisimulation and modal equivalence
	Richer modal logics

