9. Modal Logic & Verification

David Pereira José Proença Eduardo Tovar RAMDE 2021/2022 Requirements and Model-driven Engineering

CISTER – ISEP Porto, Portugal

https://cister-labs.github.io/ramde2122

Recall: What's in a logic?

A logic

A language

i.e. a collection of well-formed expressions to which meaning can be assigned.

A semantics

describing how language expressions are interpreted as statements about something.

A deductive system

i.e. a collection of rules to derive in a purely syntactic way facts and relationships among semantic objects described in the language.

Note

- a purely syntactic approach (up to the 1940's; the sacred form)
- a model theoretic approach (A. Tarski legacy)

- sentences
- models & satisfaction: $\mathfrak{M} \models \phi$
- validity: $\models \phi$ (ϕ is satisfied in every possible structure)
- logical consequence: $\Phi \models \phi$ (ϕ is satisfied in every model of Φ)
- theory: $Th \Phi$ (set of logical consequences of a set of sentences Φ)

Syntactic reasoning: deductive systems

Deductive systems \vdash

- sequents
- Hilbert systems
- natural deduction
- tableaux systems
- resolution
-
- derivation and proof
- deductive consequence: $\Phi \vdash \phi$
- theorem: $\vdash \phi$

• A deductive system \vdash is sound wrt a semantics \models if for all sentences ϕ

$$\vdash \phi \implies \models \phi$$

(every theorem is valid)

• ··· complete ...

$$\models \phi \implies \vdash \phi$$

(every valid sentence is a theorem)

For logics with negation and a conjunction operator

- A sentence ϕ is refutable if $\neg \phi$ is a theorem (i.e. $\vdash \neg \phi$)
- A set of sentences Φ is refutable if some finite conjunction of elements in Φ is refutable
- ϕ or Φ is consistent if it is not refutable.

 $\mathfrak{M}\models\phi$

- Propositional logic (logic of uninterpreted assertions; models are truth assignments)
- Equational logic (formalises equational reasoning; models are algebras)
- First-order logic (logic of predicates and quatification over structures; models are relational structures)
- Modal logics
- • • •

Modal Logic

Modal logic (from P. Blackburn, 2007)

Over the years modal logic has been applied in many different ways. It has been used as a tool for reasoning about time, beliefs, computational systems, necessity and possibility, and much else besides.

These applications, though diverse, have something important in common: the key ideas they employ (flows of time, relations between epistemic alternatives, transitions between computational states, networks of possible worlds) can all be represented as simple graph-like structures.

Modal logics are

- tools to talk about relational, or graph-like structures.
- fragments of classical ones, with restricted forms of quantification ...
- ... which tend to be decidable and described in a pointfree notations.

Syntax

 $\phi \ ::= \ p \ | \ \text{true} \ | \ \text{false} \ | \ \neg \phi \ | \ \phi_1 \land \phi_2 \ | \ \phi_1 \to \phi_2 \ | \ \langle m \rangle \phi \ | \ [m] \phi$ where $p \in \text{PROP}$ and $m \in \text{MOD}$

Disjunction (\lor) and equivalence (\leftrightarrow) are defined by abbreviation.

The signature of the basic modal language is determined by sets:

- PROP of propositional symbols (typically assumed to be denumerably infinite) and
- MOD of modality symbols.

Notes

- if there is only one modality in the signature (i.e., MOD is a singleton), write simply $\Diamond\phi$ and $\Box\phi$
- the language has some redundancy: in particular modal connectives are dual (as quantifiers are in first-order logic): [m] φ is equivalent to ¬⟨m⟩¬φ

Example

Models as LTSs over Act. MOD = Act (sets of actions) $\langle a \rangle \phi$ can be read as "*it must observe a, and* ϕ *must hold after that.*" [*a*] ϕ can be read as "*if it observes a, then* ϕ *must hold after that.*" $\mathfrak{M}, s \models \phi$ – what does it mean?

Model definition

A model for the language is a pair $\mathfrak{M} = \langle \mathfrak{L}, V \rangle$, where

- $\mathfrak{L} = \langle S, MOD, \longrightarrow \rangle$ is an LTS:
 - S is a non-empty set of states (or points)
 - MOD are the labels consisting of modality symbols
 - $\longrightarrow \subseteq S \times MOD \times S$ is the transition relation
- $V : \mathsf{PROP} \longrightarrow \mathcal{P}(S)$ is a valuation.

When MOD = 1

- $\Diamond \phi$ and $\Box \phi$ instead of $\langle \cdot \rangle \phi$ and $[\cdot] \phi$
- $\mathfrak{L} = \langle S, \longrightarrow \rangle$ instead of
 - $\mathfrak{L} = \langle S, \mathsf{MOD}, \longrightarrow \rangle$
- $\longrightarrow \subseteq S \times S$ instead of $\longrightarrow \subseteq S \times MOD \times S$

Semantics

Safistaction: for a model \mathfrak{M} and a point s

$\mathfrak{M}, s \models true$
$\mathfrak{M}, \boldsymbol{s} \not\models false$
$\mathfrak{M}, s \models p$
$\mathfrak{M}, \pmb{s} \models \neg \phi$
$\mathfrak{M}, \boldsymbol{s} \models \phi_1 \land \phi_2$
$\mathfrak{M}, \boldsymbol{s} \models \phi_1 \rightarrow \phi_2$
$\mathfrak{M}, \pmb{s} \models \langle \pmb{m} \rangle \phi$
$\mathfrak{M}, \pmb{s} \models [\pmb{m}] \phi$

iff	$s\in V(p)$
iff	$\mathfrak{M}, \boldsymbol{s} \not\models \phi$
iff	$\mathfrak{M}, s \models \phi_1$ and $\mathfrak{M}, s \models \phi_2$
iff	$\mathfrak{M}, s \not\models \phi_1$ or $\mathfrak{M}, s \models \phi_2$
iff	there exists $v \in S$ st $s \xrightarrow{m} v$ and $\mathfrak{M}, v \models v$
	m have been been been been been been been be

iff for all $v \in S$ st $s \xrightarrow{m} v$ and $\mathfrak{M}, v \models \phi$

Satisfaction

A formula ϕ is

- satisfiable in a model ${\mathfrak M}$ if it is satisfied at some point of ${\mathfrak M}$
- globally satisfied in \mathfrak{M} ($\mathfrak{M} \models \phi$) if it is satisfied at all points in \mathfrak{M}
- valid ($\models \phi$) if it is globally satisfied in all models
- a semantic consequence of a set of formulas Γ ($\Gamma \models \phi$) if for all models \mathfrak{M} and all points s, if $\mathfrak{M}, s \models \Gamma$ then $\mathfrak{M}, s \models \phi$

Example: Hennessy-Milner logic

Process logic (Hennessy-Milner logic)

- PROP = \emptyset (hence $V = \emptyset$)
- S = P is a set states in a labelled transition system, typically process terms
- each subset K ⊆ Act of actions generates a modality corresponding to transitions labelled by an element of K

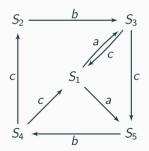
Assuming the underlying LTS $\mathfrak{L} = \langle \mathcal{P}, \mathbb{P}(Act), \{ \langle p, K, p' \rangle \mid K \subseteq Act \} \rangle$ as the model's LTS, satisfaction is abbreviated as

$$\begin{split} p &\models \langle K \rangle \phi & \text{iff} \quad \exists_{q \in \{p' \mid p \xrightarrow{a} p' \land a \in K\}} \cdot q \models \phi \\ p &\models [K] \phi & \text{iff} \quad \forall_{q \in \{p' \mid p \xrightarrow{a} p' \land a \in K\}} \cdot q \models \phi \end{split}$$

Example: Hennessy-Milner logic

Process Logic Syntax

$$\phi ::= true | false | \neg \phi | \phi_1 \land \phi_2 | \phi_1 \rightarrow \phi_2 | \langle K \rangle \phi | [K] \phi$$
where $K \subseteq Act$



Ex. 9.1: Prove:

- 1. $S_1 \models [a, b, c] (\langle b, c \rangle tt)$
- 2. $S_2 \models [a] (\langle b \rangle tt \land \langle c \rangle tt)$
- 3. $S_1 \not\models [a] (\langle b \rangle tt \land \langle c \rangle tt)$
- 4. $S_2 \models [b] [c] (\langle a \rangle tt \lor \langle b \rangle tt)$
- 5. $S_1 \models [b] [c] (\langle a \rangle tt \lor \langle b \rangle tt)$
- 6. $S_1 \models [a, b] \langle b, c \rangle (\langle a \rangle tt)$

Examples II

(P, <) a strict partial order with infimum 0 I.e., $P = \{0, a, b, c, ...\},\ a \rightarrow b$ means a < b, a < b and b < c implies a < c0 < x, for any $x \neq 0$ there are no loops some elements may not be comparable

- $P, x \models \Box$ false if x is a maximal element of P
- $P, 0 \models \Diamond \square false$ iff ...
- $P, 0 \models \Box \Diamond \Box$ false iff ...

Temporal logic

- ⟨T, <⟩ where T is a set of time points (instants, execution states , ...) and < is the earlier than relation on T.
- Thus, $\Box \varphi$ (respectively, $\Diamond \varphi$) means that φ holds in all (respectively, some) time points.

Epistemic logic (J. Hintikka, 1962)

- W is a set of agents
- $\alpha \models [K_i] \phi$ means that agent *i* always knows that ϕ is true.
- $\alpha \models \langle K_i \rangle \phi$ means that agent *i* can reach a state where he knows ϕ .
- $\alpha \models (\neg[K_i] \phi) \land (\neg[K_i] \neg \phi)$ means that agent *i* does not know whether ϕ is true or not.

Many variations exist, modelling knowledge and believes, knowledge of who knows what, distributed knowledge, etc.

Deontic logic (G.H. von Wright, 1951)

- Obligations and permissions: must and can do.
- $\alpha \models \Box \phi$ means ϕ is obligatory.
- $\alpha \models \Diamond \phi$ means ϕ is a possibility.

Each logic accepts a different set of *principles* or *rules* (with variations), that makes their interpretation different.

Exercise

Ex. 9.2: Express the properties in Process Logic

- inevitability of *a*:
- progress (can always act):
- deadlock or termination (is stuck):

Ex. 9.3: What does this mean?

- 1. $\langle \rangle$ false
- 2. [-]true

"-" stands for Act, and "-x" abbreviates $Act - \{x\}$

Recall syntax

φ

$$\begin{array}{ll} ::= & \mathsf{true} \\ & | & \mathsf{false} \\ & | & \neg \phi \\ & | & \phi_1 \land \phi_2 \\ & | & \phi_1 \to \phi_2 \\ & | & \langle K \rangle \phi \\ & | & [K] \phi \end{array}$$

where $K \subseteq Act$

Exercise

Ex. 9.2: Express the properties in Process Logic

- inevitability of *a*: $\langle \rangle$ true $\wedge [-a]$ false
- progress (can always act):
- deadlock or termination (is stuck):

Ex. 9.3: What does this mean?

- 1. $\langle \rangle$ false
- 2. [-]true

"-" stands for Act, and "-x" abbreviates $Act - \{x\}$

Recall syntax

φ

$$\begin{array}{ll} ::= \mbox{ true} \\ & | \mbox{ false} \\ & | \mbox{ } \neg \phi \\ & | \mbox{ } \phi_1 \wedge \phi_2 \\ & | \mbox{ } \phi_1 \rightarrow \phi_2 \\ & | \mbox{ } \langle K \rangle \phi \\ & | \mbox{ } [K] \phi \end{array}$$

where $K \subseteq Act$

Express the following using Process Logic

Ex. 9.4: Coffee-machine

- 1. The user can have tea or coffee.
- 2. The user can have tea but not coffee.
- 3. The user can have tea after having 2 consecutive coffees.

Ex. 9.5: *a*'s and *b*'s

- 1. It is possible to do a after 3 b's, but not more than 1 a.
- 2. It must be possible to do a after [doing a and then b].
- 3. After doing a and then b, it is not possible to do a.

Ex. 9.6: Taxi network

- $\phi_0 = \ln a$ taxi network, a car can collect a passenger or be allocated by the Central to a pending service
- $\phi_1 =$ This applies only to cars already on-service
- $\phi_2 = If$ a car is allocated to a service, it must first collect the passenger and then plan the route
- $\phi_3 = On$ detecting an emergency the taxi becomes inactive
- $\phi_4 = A$ car on-service is not inactive

Process Logic Syntax

$$\phi ::= \mathsf{true} \mid \mathsf{false} \mid \neg \phi \mid \phi_1 \land \phi_2 \mid \phi_1 \to \phi_2 \mid \langle \mathsf{E} \rangle \phi \mid [\mathsf{E}] \phi$$

```
where E is a regular expression over Act
```

More expressive than Process Logic. Used by mCRL2.

Examples

- " $\langle a.b.c \rangle$ true" means " $\langle a \rangle \langle b \rangle \langle c \rangle$ true"
- "[a.b.c] false" means "[a][b][c] false"
- " $\langle a^*.b \rangle$ true" means that b can be taken after some number of a's.
- " $\langle -^*.a \rangle$ true" means that *a* can eventually be taken
- " $[-^*]\langle a+b\rangle$ true" means it is always possible to do a or b

Ex. 9.7: What does this mean?

- 1. $\langle \rangle$ true
- 2. $[-^*]\langle \rangle$ true
- 3. $[-^*.a]\langle b \rangle$ true
- 4. [-*.send] $\langle (-send)^*.recv \rangle$ true

Ex. 9.8: Express using logic

- 1. The user can only have coffee after the coffee button is pressed.
- 2. The used must have coffee after the coffee button is pressed.
- 3. It is always possible to turn off the coffee machine.
- 4. It is always possible to reach a state where the coffee machine can be turned off.
- 5. It is never possible to add chocolate right after pressing the *latte button*.

mCRL2 Tools

Slides 10:

https://cister-labs.github.io/ramde2122/slides/10-mcrl2.pdf

Bisimulation and modal equivalence

Definition

Given two models $\mathfrak{M} = \langle \mathfrak{L}, V \rangle$ and $\mathfrak{M}' = \langle \mathfrak{L}', V' \rangle$, a bisimulation of \mathfrak{L} and \mathfrak{L}' is also

a bisimulation of ${\mathfrak M}$ and ${\mathfrak M}'$ if,

whenever $s \ R \ s'$, then V(s) = V'(s')

Lemma (invariance: bisimulation implies modal equivalence) Given two models \mathfrak{M} and \mathfrak{M}' , and a bisimulation R between their states:

if two states s, s' are related by R (i.e. sRs'), then s, s' satisfy the same basic modal formulas. (i.e., for all ϕ : $\mathfrak{M}, s \models \phi \Leftrightarrow \mathfrak{M}', s' \models \phi$)

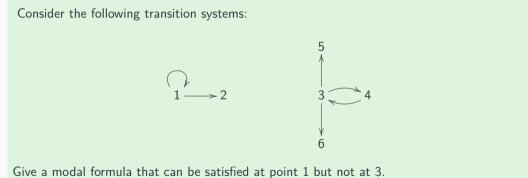
Hence

Given 2 models ${\mathfrak M}$ and ${\mathfrak M}',$ if you can find ϕ such that

 $\mathfrak{M} \models \phi \text{ and } \mathfrak{M}' \not\models \phi$

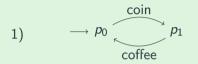
(or vice-versa) then they are NOT bisimilar.

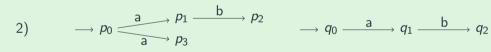
Ex. 9.9: Bisimilarity and modal equivalence

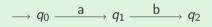


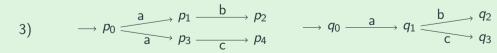
Exercise

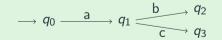
Ex. 9.10: Find distinguishing modal formula











Richer modal logics

Richer modal logics

can be obtained in different ways, e.g.

- axiomatic extensions
- introducing more complex satisfaction relations
- support novel semantic capabilities
- •

Examples

- richer temporal logics
- hybrid logic
- modal µ-calculus

Temporal Logics with ${\cal U}$ and ${\cal S}$

Until and Since

$\mathfrak{M}, \mathbf{w} \models \phi \mathcal{U} \psi$	iff	there exists v st $w \leq v$ and $\mathfrak{M}, v \models \psi$, and
		for all u st $w \leq u < v$, one has $\mathfrak{M}, u \models \phi$
$\mathfrak{M}, \mathbf{w} \models \phi \mathcal{S} \psi$	iff	there exists v st $v \leq w$ and $\mathfrak{M}, v \models \psi$, and
		for all u st $v < u \leq w$, one has $\mathfrak{M}, u \models \phi$

- Defined for temporal frames $\langle T, \rangle$ (transitive, asymmetric).
- note the $\exists \forall$ qualification pattern: these operators are neither diamonds nor boxes.
- More general definition for other frames it becomes more expressive than modal logics.

Temporal logics - rewrite using \mathcal{U}

- $\Diamond \psi =$ $\Box \psi =$

Temporal logics - rewrite using \mathcal{U}

- $\Diamond \psi = tt \mathcal{U} \psi$ $\Box \psi =$

Temporal logics - rewrite using ${\cal U}$

- $\Diamond \psi = \operatorname{tt} \mathcal{U} \psi$
- $\Box \psi = \neg (\Diamond \neg \psi) = \neg (tt \, \mathcal{U} \neg \psi)$

Linear temporal logic (LTL)

$$\phi := \mathsf{true} \mid p \mid \phi_1 \land \phi_2 \mid \neg \phi \mid \bigcirc \phi \mid \phi_1 \, \mathcal{U} \, \phi_2$$

mutual exclusion	$\Box(\neg c_1 \lor \neg c_2)$
liveness	$\Box \diamondsuit c_1 \land \Box \diamondsuit c_2$
starvation freedom	$(\Box \Diamond w_1 ightarrow \Box \Diamond c_1) \land (\Box \Diamond w_1 ightarrow \Box \Diamond c_1)$
progress	$\Box(w_1 o \Diamond c_1)$
weak fairness	$\Box w_1 \rightarrow \Box \Diamond c_1$
eventually forever	$\Box w_1$

- First temporal logic to reason about reactive systems [Pnueli, 1977]
- Formulas are interpreted over execution paths
- Express linear-time properties

Computational tree logic (CTL, CTL*)

state formulas to express properties of a state:

$$\Phi := \mathsf{true} \mid \Phi \land \Phi \mid \neg \Phi \mid \exists \psi \mid \forall \psi$$

path formulas to express properties of a path:

 $\psi := \bigcirc \Phi \mid \Phi \, \mathcal{U} \, \Psi$

mutual exclusion	$\forall \Box (\neg c_1 \lor \neg c_2)$
liveness	$\forall \Box \forall \Diamond c_1 \land \forall \Box \forall \Diamond c_2$
order	$\forall \Box (c_1 \lor \forall \bigcirc c_2)$

- Branching time structure encode transitive, irreflexive but not necessarily linear flows of time
- flows are trees: past linear; branching future

Hybrid logic

Motivation

Add the possibility of naming points and reason about their identity

Compare:

$$\Diamond(r \wedge p) \land \Diamond(r \wedge q) \rightarrow \Diamond(p \wedge q)$$

with

$$\Diamond(i \wedge p) \land \Diamond(i \wedge q) \rightarrow \Diamond(p \wedge q)$$

for $i \in NOM$ (a nominal)

Syntax

$$\phi ::= \ldots \mid p \mid \langle m \rangle \phi \mid [m] \phi \mid i \mid @_i \phi$$

where $p \in \mathsf{PROP}$ and $m \in \mathsf{MOD}$ and $i \in \mathsf{NOM}$

Hybrid logic

Nominals *i*

- Are special propositional symbols that hold exactly on one state (the state they name)
- In a model the valuation V is extended from

$$V : \mathsf{PROP} \longrightarrow \mathcal{P}(W)$$

to

$$V : \mathsf{PROP} \longrightarrow \mathcal{P}(W) \text{ and } V : \mathsf{NOM} \longrightarrow W$$

where NOM is the set of nominals in the model

• Satisfaction:

$$\mathfrak{M}, w \models i$$
 iff $w = V(i)$

Hybrid logic

The $@_i$ operator

- $\mathfrak{M}, s \models \mathsf{true}$ $\mathfrak{M}, s \not\models \mathsf{false}$ $\mathfrak{M}, s \models p$ $\mathfrak{M}, s \models \neg \phi$ $\mathfrak{M}, s \models \phi_1 \land \phi_2$ \mathfrak{M} , $s \models \phi_1 \rightarrow \phi_2$ $\mathfrak{M}, s \models \langle m \rangle \phi$ $\mathfrak{M}, s \models [m] \phi$
- $\mathfrak{M}, \pmb{s} \models \pmb{\mathbb{0}}_i \phi$

- iff $s \in V(p)$ iff $\mathfrak{M}, s \not\models \phi$ iff $\mathfrak{M}, s \models \phi_1$ and $\mathfrak{M}, s \models \phi_2$ iff $\mathfrak{M}, s \not\models \phi_1$ or $\mathfrak{M}, s \models \phi_2$ iffthere exists $v \in S$ st $s \xrightarrow{m} v$ and $\mathfrak{M}, v \models \phi$
- $\text{iff} \quad \text{ for all } v \in S \text{ st } s \xrightarrow{m} v \text{ and } \mathfrak{M}, v \models \phi \\$
- iff $\mathfrak{M}, u \models \phi$ and u = V(i)[*u* is the state denoted by *i*]

37/38

Summing up

- basic hybrid logic is a simple notation for capturing the bisimulation-invariant fragment of first-order logic with constants and equality, i.e., a mechanism for equality reasoning in propositional modal logic.
- comes cheap: up to a polynomial, the complexity of the resulting decision problem is no worse than for the basic modal language