8. Behavioural equivalences

David Pereira José Proença Eduardo Tovar RAMDE 2021/2022 Requirements and Model-driven Engineering

CISTER – ISEP Porto, Portugal

https://cister-labs.github.io/ramde2122

Overview

Recall

- 1. Non-deterministic Finite Automata: $\rightarrow q_1 \xrightarrow{a} q_2 \xrightarrow{b} b$
- 2. Process algebra: P = a.Q Q = b.Q P|Q
- 3. Interaction between processes
- 4. Meaning of PA using NFA

Still missing

- When is a process *P* equivalent to a process *Q*?
- When can a process *P* be safely replaced by a process *Q*?
- When can a sequence of interactions be safely implemented as interacting components?

- High-level overview or requirements and associated processes
- Mathematical Preliminaries
 - Basic mathematical notations
 - Set theory
 - PropositionalLogic
 - First Order Logic

- Behavioural modelling
 - Single component
 - Many components
 - Equivalences
 - Language Equivalence
 - (Bi)similarity
 - Realisability
 - Verification

Two automata (or LTS) should be equivalent if they cannot be distinguished by interacting with them.

Equality of functional behaviour

is not preserved by parallel composition: non compositional semantics, cf,

x:=4; x:=x+1 and x:=5

Graph isomorphism

is too strong (why?)

EQ1 – Language equivalence

Language equivalence

Definition

Two automata A, B are language equivalent iff $L_A = L_B$

(i.e. if they can perform the same finite sequences of transitions)

Example

Language equivalence applies when one can neither interact with a system, nor distinguish a slow system from one that has come to a stand still.

Exercise

Ex. 8.1: Find pairs of automata with the same language

Ex. 8.2: Check if the processes are language equivalent

$$P = coin.(\overline{coffee}.P + \overline{tea}.P)$$
 $Q = coin.\overline{coffee}.Q + coin.\overline{tea}.Q$

EQ2 – Similarity

the quest for a behavioural equality:

able to identify states that cannot be distinguished by any realistic form of observation

Simulation

A state q simulates another state p if every transition from q is corresponded by a transition from p and this capacity is kept along the whole life of the system to which state space q belongs to.

Simulation

Definition

Given $\langle S_1, N, \longrightarrow_1 \rangle$ and $\langle S_2, N, \longrightarrow_2 \rangle$ over N (ignoring initial and final states) a relation $R \subseteq S_1 \times S_2$ is a simulation iff, for all $\langle p, q \rangle \in R$ and $a \in N$,

(1)
$$p \stackrel{a}{\longrightarrow}_1 p' \Rightarrow \langle \exists q' : q' \in S_2 : q \stackrel{a}{\longrightarrow}_2 q' \land \langle p', q' \rangle \in R \rangle$$

Example

Ex. 8.3: Find simulations

Example

Ex. 8.3: Find simulations

$$q_0 \lesssim p_0$$
 cf. { $\langle q_0, p_0 \rangle, \langle q_1, p_1 \rangle, \langle q_4, p_1 \rangle, \ldots$ }

Definition

$$p \lesssim q ~\equiv~ \langle \exists ~ R ~:: ~ R$$
 is a simulation and $\langle p,q
angle \in R
angle$

We say p is simulated by q.

Lemma

The similarity relation is a preorder

(ie, reflexive and transitive)

EQ3 – Bisimilarity

Bisimulation

Definition

Given $(S_1, N, \longrightarrow_1)$ and $(S_2, N, \longrightarrow_2)$ over N, relation $R \subseteq S_1 \times S_2$ is a bisimulation iff both R and its converse R° are simulations.

I.e., whenever $\langle p,q \rangle \in R$ and $a \in N$,

(1)
$$p \xrightarrow{a}_{1} p' \Rightarrow \langle \exists q' : q' \in S_2 : q \xrightarrow{a}_{2} q' \land \langle p', q' \rangle \in R \rangle$$

(2) $q \xrightarrow{a}_{2} q' \Rightarrow \langle \exists p' : p' \in S_1 : p \xrightarrow{a}_{1} p' \land \langle p', q' \rangle \in R \rangle$

Examples

Ex. 8.4: Find bisimulations that include $\langle q_1, m \rangle$

Ex. 8.5: Find bisimulations that include $\langle q_1, h \rangle$

$$q_1 \xrightarrow{a} q_2 \xrightarrow{a} q_3 \xrightarrow{a} \cdots \qquad h \bigcirc a$$

Ex. 8.6: Check if there is a bisimulation that include $\langle q_1, p_1 \rangle$

Exercises

Ex. 8.7: Check if there is a bisimulation that include $\langle q_1, p_1 \rangle$

Ex. 8.8: Check if there is a bisimulation that include $\langle P, Q \rangle$

 $P = coin.(\overline{coffee}.P + \overline{tea}.P)$ $Q = coin.\overline{coffee}.Q + coin.\overline{tea}.Q$

Definition

 $p \sim q \equiv \langle \exists \ R \ :: \ R \text{ is a bisimulation and } \langle p,q
angle \in R
angle$

We say p is bisimilar to q.

Lemma

Two processes P and Q are bisimilar if there is a bisimulation that includes $\langle P, Q \rangle$.

Lemma

The bisimilarity relation is an equivalence relation

(ie, symmetric, reflexive and transitive)

Warning

$$\left[\left[p \lesssim q \text{ and } q \lesssim p
ight] ext{ does not imply } \left[p \sim q
ight]
ight]$$

Properties

Warning

$$\left[p \lesssim q ext{ and } q \lesssim p
ight]$$
 does not imply $\left[p \sim q
ight]$

Example

Similarity as the greatest simulation

$$\lesssim \triangleq \bigcup \{S \mid S \text{ is a simulation} \}$$

Bisimilarity as the greatest bisimulation

$$\sim \triangleq \bigcup \{ S \mid S \text{ is a bisimulation} \}$$

Exercises

Ex. 8.9: P,Q Bisimilar? $\mathbf{P} = a.P_1$ $P_1 = b.P + c.P$ $\mathbf{Q} = a_{1}Q_{1}$ $Q_1 = b.Q_2 + c.Q$ $Q_2 = a.Q_3$ $Q_3 = b_1Q + c_2Q_2$

Ex. 8.10: P,Q Bisimilar?

 $\mathbf{P}=a.(b.\mathbf{0}+\mathbf{0})$ $\mathbf{Q}=a.b.\mathbf{0}$

Ex. 8.11: P,Q Bisimilar? P = a.(b.0 + c.0)Q = a.b.0 + a.c.0

Draw their LTS. If bisimilar, find the bisimulation.

Exercises

Ex. 8.12: Find a bisimulation with $\langle s, t \rangle$

Ex. 8.13: Find a simulation between SmUni and SmUni'

 $CM = \text{coin.coffee.} CM \qquad CM' = \text{coin.}(\overline{\text{coffee.}} CM' + \text{coin.latte.} CM')$ $CS = \text{pub.coin.coffee.} CS \qquad CS' = \text{pub.coin.}(\text{coffee.} CS' + \overline{\text{coin.latte.}} CS')$ $SmUni = (CM|CS) \setminus \{\text{coin, coffee}\} \qquad SmUni' = (CM'|CS') \setminus \{\text{coin, coffee, latte}\}$

Weak bisimilarity

Considering τ -transitions

Weak transition

$$p \stackrel{lpha}{\Longrightarrow} q \quad \text{iff} \quad p \left(\stackrel{ au}{\longrightarrow}\right)^* q_1 \stackrel{a}{\longrightarrow} q_2 \left(\stackrel{ au}{\longrightarrow}\right)^* q$$

 $p \stackrel{ au}{\Longrightarrow} q \quad \text{iff} \quad p \left(\stackrel{ au}{\longrightarrow}\right)^* q$

where $\alpha \neq \tau$ and $(\stackrel{\tau}{\longrightarrow})^*$ is the reflexive and transitive closure of $\stackrel{\tau}{\longrightarrow}$.

Weak bisimulation (vs. strong)

Given $\langle S_1, N, \longrightarrow_1 \rangle$ and $\langle S_2, N, \longrightarrow_2 \rangle$ over N, relation $R \subseteq S_1 \times S_2$ is a bisimulation iff for all $\langle p, q \rangle \in R$ and $a \in N \cup \{\tau\}$,

(1)
$$p \xrightarrow{a}_{1} p' \Rightarrow \langle \exists q' : q' \in S_2 : q \xrightarrow{a}_{2} q' \land \langle p', q' \rangle \in R \rangle$$

(2) $q \xrightarrow{a}_{2} q' \Rightarrow \langle \exists p' : p' \in S_1 : p \xrightarrow{a}_{1} p' \land \langle p', q' \rangle \in R \rangle$

Considering τ -transitions

Branching bisimulation

Given $\langle S_1, N, \longrightarrow_1 \rangle$ and $\langle S_2, N, \longrightarrow_2 \rangle$ over N, relation $R \subseteq S_1 \times S_2$ is a bisimulation iff for all $\langle p, q \rangle \in R$ and $a \in N \cup \{\tau\}$,

(1) if
$$p \xrightarrow{a}_{1} p'$$
 then either
(1.1) $a = \tau$ and $\langle p', q \rangle \in R$ or
(1.2) $\langle \exists q', q'' \in S_2 :: q(\xrightarrow{\tau}_{2})^* q' \xrightarrow{a}_{2} q'' \land \langle p, q' \rangle \in R \land \langle p', q'' \rangle \in R \rangle$

(2) if $q \xrightarrow{a}_{2} q'$ then either (2.1) $a = \tau$ and $\langle p', q' \rangle \in R$ or (2.2) $\langle \exists p', p'' \in S_1 :: p(\xrightarrow{\tau}_1)^* p' \xrightarrow{a}_1 p'' \land \langle p', q \rangle \in R \land \langle p'', q' \rangle \in R \rangle$ **Ex. 8.14:** Search for a bisimulation, a weak bisimulation, and a branching bisimulation between *SmUni* and *SmUni*"

CM = coin.coffee.CM CS = pub.coin.coffee.CS $SmUni = (CM|CS) \setminus \{\text{coin,coffee}\}$ CM'' = CM'' =

 $CM'' = \text{coin.(sel.}\overline{\text{coffee.}}CM'' + \\ \text{coin.sel.}\overline{\text{latte.}}CM'')$ $CS'' = \text{pub.}\overline{\text{coin.sel.coffee.}}CS''$ $SmUni'' = (CM''|CS'') \setminus \{\text{coin, coffee, latte, sel} \}$

mCRL2 Tools

Slides 10:

https://cister-labs.github.io/ramde2122/slides/10-mcrl2.pdf

Realisability of Sequence Diagrams

Recall: Sequence Diagrams as Interactive Processes

- Objects as Processes
 (e.g., processes U, A, C, B)
- Send actions (e.g., *insertCard*)
- Reveive actions (e.g., *insertCard*)

- Unique action for each object pair
- Do not write (...+0)

Recall: Language of Sequence Diagrams, Informally

This example has only 1 word and its prefixes

$$L_{sd} = \{ insertCard \cdot verifyCard \cdot verifyAccount \cdot accountNotOK \cdot rejectedCard \cdot ejectCard \}$$

We can specify a SD as interactive processes $Sys_{local} = (U|A|C|E) \setminus \dots$ U = insertCard.ejectCart.0 $A = \dots$ $C = \dots$ $E = \dots$

- Sequence diagrams depict scenarios (possible sequence of actions)
- Processes abstract implementations

 (simplified view of concrete implementations)

Processes can do more

E.g., an ATM that also *accepts* cards can (and should) still support the *rejection* scenario.

We want to observe interactions in such processes

Modified CCS semantics

(com1)	(com2)	(com3)		
$P \xrightarrow{\alpha} P'$	$Q \xrightarrow{lpha} Q'$	$P \xrightarrow{a} P'$	$Q \stackrel{\overline{a}}{ ightarrow} Q'$	
$P Q \xrightarrow{lpha} P' Q$	$P Q \xrightarrow{\alpha} P Q'$	$P Q \xrightarrow{\tau_a} P' Q'$		

 $\alpha \in \mathbb{N} \cup \mathbb{N} \cup \{\tau_a \mid a \in \mathbb{N}\}\$ is an action

Recall Syslocal from Slide 29 and its diagram sd.

$$L_{sd} = \{ iC \cdot vC \cdot cA \cdot aN \cdot rC \cdot eC \}$$
$$L_{Sys} = \{ \tau_{iC} \cdot \tau_{vC} \cdot \tau_{cA} \cdot \tau_{aN} \cdot \tau_{rC} \cdot \tau_{eC} \}$$

Language inclusion

 $\begin{array}{l} \mathsf{P} \text{ includes sd} \\ & \\ \mathsf{iff} \\ L_{sd} \subseteq L_{P^{\dagger}} \end{array}$

$$P^{\dagger}$$
 modifies P's LTS by:
filtering actions of *sd* and replacing τ_a by *a*

Are words enough?

Ex. 8.15: Let *sd* be the diagram above and recall Slide 29 Does *Sys_{local}* still includes *sd* if *U* is instead defined as below?

1. $U = \overline{insertCard}.ejectCard.\mathbf{0} + \overline{insertCard}.\mathbf{0}$

2.
$$U = (\overline{insertCard}.ejectCard.0) + \overline{goAway}.0)$$

Is language coverage enough?

Implementations can have:

- extra undesirable behaviour
- less behaviour

Alternative: change the inclusion/equivalence

Let $SD = \{sd_1, sd_2, \ldots\}$ be a set of sequence diagrams.

Language inclusion:	$L_{SD} \subseteq L_{P^{\dagger}}$
Language equivalence:	$L_{SD} = L_{P^{\dagger}}$
Similarity:	$\mathit{NFA}(\mathit{SD}) \lesssim \mathit{P}^\dagger$
Bisimilarity:	$\textit{NFA(SD)} \sim \textit{P}^{\dagger}$

Exercise

Ex. 8.16: Draw an NFA that captures the following diagram

Exercise

Ex. 8.17: Write a process for each object of the diagram

Realisability

Question: after encoding SD into processes:

Can we recover the behaviour of the original sequence diagram by composing the encoded processes?

Realisability

A set SD of sequence diagrams is realisable

iff $NFA(SD) \sim Comp(Proc(SD))^{\dagger}$

Proc(SD) returns the set of encoded processes for each $sd \in SD$ $Comp(P_1, P_2, \ldots) = (P_1|P_2|\ldots) \setminus \{actions of SD\}$

Exercise

Ex. 8.18: Are the diagrams below realisable?

- 1. draw NFA(SD)
- 2. calculate Proc(SD)Hint: $B = \overline{vA}.(aN.\mathbf{0} + aN.c.\mathbf{0})$
- 3. draw $Comp(\cdot)$
- 4. search for a bisimulation

Ex. 8.19: Verify if the diagram in Slide 36 is realisable.

Exercise

Ex. 8.20: Verify if the diagram is realisable.

Realisability of sequence diagrams experiments:

https://arca.di.uminho.pt/choreo