
8. Behavioural equivalences

David Pereira José Proença Eduardo Tovar
RAMDE 2021/2022
Requirements and Model-driven Engineering

CISTER – ISEP
Porto, Portugal

https://cister-labs.github.io/ramde2122

https://cister-labs.github.io/ramde2122

Overview

Recall

1. Non-deterministic Finite Automata: q1 q2
a b

2. Process algebra: P = a.Q Q = b.Q P|Q
3. Interaction between processes
4. Meaning of PA using NFA

Still missing
• When is a process P equivalent to a process Q?
• When can a process P be safely replaced by a process Q?
• When can a sequence of interactions be safely implemented as interacting

components?
2/40

Syllabus

• High-level overview or requirements
and associated processes

• Mathematical Preliminaries
• Basic mathematical notations
• Set theory
• PropositionalLogic
• First Order Logic

• Behavioural modelling
• Single component
• Many components
• Equivalences

• Language Equivalence
• (Bi)similarity
• Realisability

• Verification

3/40

Behavioural Equivalences – Intuition

Two automata (or LTS) should be equivalent if they cannot be distinguished by interacting
with them.

Equality of functional behaviour
is not preserved by parallel composition: non compositional semantics, cf,

x:=4; x:=x+1 and x:=5

Graph isomorphism
is too strong (why?)

4/40

EQ1 – Language equivalence

Language equivalence

Definition
Two automata A, B are language equivalent iff LA = LB

(i.e. if they can perform the same finite sequences of transitions)

Example

2.3 Equivalence of behaviours
When do two systems have the same behaviour? Or stated differently, when are two labelled transition
systems behaviourally equivalent? The initial answer to this question is simple. Whenever the difference
in behaviour cannot be observed, we say that the behaviour is the same. The obvious next question is how
behaviour is observed? The answer to this latter question is that there are many ways to observe behaviour
and consequently many different behavioural equivalences exist. We present the most important ones here.
For an overview see [20].

2.3.1 Trace equivalence
One of the coarsest (most unifying) notions of behavioural equivalence is trace equivalence. The essential
idea is that two transition systems are equivalent if the same sequences of actions can be performed from
their respective initial states. Traces are sequences of actions, typically denoted as a1a2a3 . . . an. We
typically use letters σ and ρ to represent traces. The termination symbol ! can also be part of a trace. The
symbol ε represents the empty trace.

Definition 2.3.1 (Trace equivalence). Let A = (S,Act ,−→, s, T) be a labelled transition system. The set
of traces (runs, sequences) Traces(t) for a state t ∈ S is the minimal set satisfying:

1. ε ∈ Traces(t), i.e. the empty trace is a member of Traces(t),

2. ! ∈ Traces(t) iff t ∈ T , and

3. if there is a state t′ ∈ S such that t
a−→ t′ and σ ∈ Traces(t′) then aσ ∈ Traces(t).

Two states t, u ∈ S are called trace equivalent if and only if (iff) Traces(t) = Traces(u). Two transition
systems are trace equivalent iff their initial states are trace equivalent.

The sets of traces of the two transition systems in figure 2.1 are respectively {ε, a, ab, abc, abcd} and
{ε, a, ab, abc, abcd, abcd!}. The two transition systems are not trace equivalent.

set

set

reset

alarm

set

alarm

reset

Figure 2.5: Two trace-equivalent alarm clocks

Consider the labelled transition systems for the two alarm clocks depicted in figure 2.5. The alarm
clock at the left-hand side has a nondeterministic choice between two transitions labelled with set : if it
moves with the set transition to right, it behaves the same as the right-hand-side labelled transition system.
However, if it moves to left with the other set transition, it deadlocks. Hence, the observational behaviour
of the two transition systems is different: in the left-hand-side one sometimes is blocked while in the right-
hand-side one can keep doing actions. This is the reason why trace equivalence generally is not used and a
finer notions of equivalence are used which refine trace equivalence by taking deadlocks into account.

However, there are cases where trace equivalence is useful. If the only observations are that one can
see what is happening without being able to influence the behaviour and one cannot observe that no more
actions are possible, trace equivalence is the right notion. In other words, trace equivalence is appropriate
when one can neither interact with a system, nor distinguish a slow system from one that has come to a
stand still.

Also, many properties only regard the traces of processes. A property can for instance be that before
every b an a action must be done. This property is preserved by trace equivalence. So, in order to determine

20

Language equivalence applies when one can neither interact with a system, nor distinguish a
slow system from one that has come to a stand still.

5/40

Exercise

Ex. 8.1: Find pairs of automata with the same language

A0 A1
aa b B0 B1

aa a

C0 C1
aa b D0 D1

aa a

E0 E1

a

a
a

6/40

Exercise

Ex. 8.2: Check if the processes are language equivalent

P = coin.(coffee.P + tea.P) Q = coin.coffee.Q + coin.tea.Q

7/40

EQ2 – Similarity

Simulation

the quest for a behavioural equality:
able to identify states that cannot be distinguished by any realistic form of observation

Simulation

A state q simulates another state p if
every transition from q is corresponded by a transition from p and
this capacity is kept along the whole life of the system to which state space q belongs
to.

8/40

Simulation

Definition
Given ⟨S1, N, −→1⟩ and ⟨S2, N, −→2⟩ over N (ignoring initial and final states) a relation
R ⊆ S1 × S2 is a simulation iff, for all ⟨p, q⟩ ∈ R and a ∈ N,

(1) p a−→1 p′ ⇒ ⟨∃ q′ : q′ ∈ S2 : q a−→2 q′ ∧ ⟨p′, q′⟩ ∈ R⟩

p

a

��

R q

⇒
q

a

��
p′ p′ R q′

9/40

Example

Ex. 8.3: Find simulations

q1
d // q2 p2

q0

a
>>

a

p0
a // p1

d
>>

e

q4 e
// q3 p3

q0 ≲ p0 cf. {⟨q0, p0⟩, ⟨q1, p1⟩, ⟨q4, p1⟩, . . .}

10/40

Example

Ex. 8.3: Find simulations

q1
d // q2 p2

q0

a
>>

a

p0
a // p1

d
>>

e

q4 e
// q3 p3

q0 ≲ p0 cf. {⟨q0, p0⟩, ⟨q1, p1⟩, ⟨q4, p1⟩, . . .}

10/40

Similarity

Definition

p ≲ q ≡ ⟨∃ R :: R is a simulation and ⟨p, q⟩ ∈ R⟩

We say p is simulated by q.

Lemma
The similarity relation is a preorder
(ie, reflexive and transitive)

11/40

EQ3 – Bisimilarity

Bisimulation

Definition
Given ⟨S1, N, −→1⟩ and ⟨S2, N, −→2⟩ over N, relation R ⊆ S1 × S2 is a bisimulation iff both
R and its converse R◦ are simulations.

I.e., whenever ⟨p, q⟩ ∈ R and a ∈ N,

(1) p a−→1 p′ ⇒ ⟨∃ q′ : q′ ∈ S2 : q a−→2 q′ ∧ ⟨p′, q′⟩ ∈ R⟩

(2) q a−→2 q′ ⇒ ⟨∃ p′ : p′ ∈ S1 : p a−→1 p′ ∧ ⟨p′, q′⟩ ∈ R⟩

p q

p′ q′

R q

Rp′

a a⇒
p q

p′ q′R q′

Rp

a a⇐

12/40

Examples

Ex. 8.4: Find bisimulations that include ⟨q1, m⟩

q1
a

~~

a

m
a
��

q2
c // q3 chh n cee

Ex. 8.5: Find bisimulations that include ⟨q1, h⟩

q1
a // q2

a // q3
a // · · · h aee

13/40

Exercises

Ex. 8.6: Check if there is a bisimulation that include ⟨q1, p1⟩

q1
a

~~

a

p1

a
��

q2

c
��

q3

c
��

p2
c

~~

c

q4 q5 p4 p5

14/40

Exercises

Ex. 8.7: Check if there is a bisimulation that include ⟨q1, p1⟩

q1
a

~~

a

p1

a
��

q2

b
��

q3

c
��

p2
b

~~

c

q4 q5 p4 p5

Ex. 8.8: Check if there is a bisimulation that include ⟨P, Q⟩

P = coin.(coffee.P + tea.P) Q = coin.coffee.Q + coin.tea.Q

15/40

Bisimilarity

Definition

p ∼ q ≡ ⟨∃ R :: R is a bisimulation and ⟨p, q⟩ ∈ R⟩

We say p is bisimilar to q.

Lemma
Two processes P and Q are bisimilar if there is a bisimulation that includes ⟨P, Q⟩.

Lemma
The bisimilarity relation is an equivalence relation
(ie, symmetric, reflexive and transitive)

16/40

Properties

Warning [
p ≲ q and q ≲ p

]
does not imply

[
p ∼ q

]

17/40

Properties

Warning [
p ≲ q and q ≲ p

]
does not imply

[
p ∼ q

]
Example

q0 ≲ p0, p0 ≲ q0 but p0 ̸∼ q0

q1

q0

a
>>

a

p0
a // p1

b // p3

q2
b // q3

18/40

Notes

Similarity as the greatest simulation

≲ ≜
⋃

{S | S is a simulation}

Bisimilarity as the greatest bisimulation

∼ ≜
⋃

{S | S is a bisimulation}

19/40

Exercises

Ex. 8.9: P,Q Bisimilar?

P = a.P1

P1 = b.P + c.P

Q = a.Q1

Q1 = b.Q2 + c.Q
Q2 = a.Q3

Q3 = b.Q + c.Q2

Ex. 8.10: P,Q Bisimilar?

P = a.(b.0 + 0)

Q = a.b.0

Ex. 8.11: P,Q Bisimilar?

P = a.(b.0 + c.0)

Q = a.b.0 + a.c.0

Draw their LTS. If bisimilar, find the bisimulation.
20/40

Exercises

Ex. 8.12: Find a bisimulation with ⟨s, t⟩

42 Behavioural equivalences

Exercise 3.5 Consider the following LTS.

s

a

!!

a

""!
!!

!!
!!

!!
!!

s1

a

##""
""

""
""

""

b

""!
!!

!!
!!

!!
!

s2

a

!!
s3

a

$$

s4

a

%% t

a

!!

a && t3
a && t4

a

''

t1

b

((

a

))
t2

a

**

Show that s ∼ t by finding a strong bisimulation R containing the pair (s, t). !

Before looking at a few more examples, we now present some general properties
of strong bisimilarity. In particular, we shall see that ∼ is an equivalence relation
and that it is preserved by all the constructs in the CCS language.

The following result states the most basic properties of strong bisimilarity; it is
our first theorem in this book.

Theorem 3.1 For all LTSs, the relation ∼
1. is an equivalence relation,
2. is the largest strong bisimulation, and
3. satisfies the following property:

s1 ∼ s2 iff, for each action α,
if s1

α→ s′
1 then there is a transition s2

α→ s′
2 such that s′

1 ∼ s′
2;

if s2
α→ s′

2 then there is a transition s1
α→ s′

1 such that s′
1 ∼ s′

2.

Proof. Consider an LTS (Proc, Act, { α→ | α ∈ Act}). We will prove each of the
above statements in turn.

Proof of 1. In order to show that ∼ is an equivalence relation over the set of
states Proc, we need to argue that it is reflexive, symmetric and transitive. (See
Definition 3.1.)

To prove that ∼ is reflexive, it suffices to provide a bisimulation that contains
the pair (s, s) for each state s ∈ Proc. It is not hard to see that the identity
relation

I = {(s, s) | s ∈ Proc}
is such a relation.

42 Behavioural equivalences

Exercise 3.5 Consider the following LTS.

s

a

!!

a

""!
!!

!!
!!

!!
!!

s1

a

##""
""

""
""

""

b

""!
!!

!!
!!

!!
!

s2

a

!!
s3

a

$$

s4

a

%% t

a

!!

a && t3
a && t4

a

''

t1

b

((

a

))
t2

a

**

Show that s ∼ t by finding a strong bisimulation R containing the pair (s, t). !

Before looking at a few more examples, we now present some general properties
of strong bisimilarity. In particular, we shall see that ∼ is an equivalence relation
and that it is preserved by all the constructs in the CCS language.

The following result states the most basic properties of strong bisimilarity; it is
our first theorem in this book.

Theorem 3.1 For all LTSs, the relation ∼
1. is an equivalence relation,
2. is the largest strong bisimulation, and
3. satisfies the following property:

s1 ∼ s2 iff, for each action α,
if s1

α→ s′
1 then there is a transition s2

α→ s′
2 such that s′

1 ∼ s′
2;

if s2
α→ s′

2 then there is a transition s1
α→ s′

1 such that s′
1 ∼ s′

2.

Proof. Consider an LTS (Proc, Act, { α→ | α ∈ Act}). We will prove each of the
above statements in turn.

Proof of 1. In order to show that ∼ is an equivalence relation over the set of
states Proc, we need to argue that it is reflexive, symmetric and transitive. (See
Definition 3.1.)

To prove that ∼ is reflexive, it suffices to provide a bisimulation that contains
the pair (s, s) for each state s ∈ Proc. It is not hard to see that the identity
relation

I = {(s, s) | s ∈ Proc}
is such a relation.

21/40

Exercise

Ex. 8.13: Find a simulation between SmUni and SmUni ′

CM = coin.coffee.CM
CS = pub.coin.coffee.CS

SmUni = (CM|CS)\{coin, coffee}

CM ′ = coin.(coffee.CM ′ + coin.latte.CM ′)
CS ′ = pub.coin.(coffee.CS ′ + coin.latte.CS ′)

SmUni ′ = (CM ′|CS ′)\{coin, coffee, latte}

22/40

Weak bisimilarity

Weak bisimulations

Considering τ -transitions

Weak transition
p α=⇒ q iff p (τ−→)∗ q1

a−→ q2 (τ−→)∗ q

p τ=⇒ q iff p (τ−→)∗ q

where α ̸= τ and (τ−→)∗ is the reflexive and transitive closure of τ−→.

Weak bisimulation (vs. strong)
Given ⟨S1, N, −→1⟩ and ⟨S2, N, −→2⟩ over N, relation R ⊆ S1 × S2 is a bisimulation iff for all
⟨p, q⟩ ∈ R and a ∈ N ∪ {τ},

(1) p a−→1 p′ ⇒ ⟨∃ q′ : q′ ∈ S2 : q a=⇒2 q′ ∧ ⟨p′, q′⟩ ∈ R⟩

(2) q a−→2 q′ ⇒ ⟨∃ p′ : p′ ∈ S1 : p a=⇒1 p′ ∧ ⟨p′, q′⟩ ∈ R⟩

23/40

Branching bisimulations

Considering τ -transitions

Branching bisimulation
Given ⟨S1, N, −→1⟩ and ⟨S2, N, −→2⟩ over N, relation R ⊆ S1 × S2 is a bisimulation iff for all
⟨p, q⟩ ∈ R and a ∈ N ∪ {τ},

(1) if p a−→1 p′ then either
(1.1) a = τ and ⟨p′, q⟩ ∈ R or
(1.2) ⟨∃ q′, q′′ ∈ S2 :: q (τ−→2)∗ q′ a−→2 q′′ ∧ ⟨p, q′⟩ ∈ R ∧ ⟨p′, q′′⟩ ∈ R⟩

(2) if q a−→2 q′ then either
(2.1) a = τ and ⟨p′, q′⟩ ∈ R or
(2.2) ⟨∃ p′, p′′ ∈ S1 :: p (τ−→1)∗ p′ a−→1 p′′ ∧ ⟨p′, q⟩ ∈ R ∧ ⟨p′′, q′⟩ ∈ R⟩

24/40

Exercise

Ex. 8.14: Search for a bisimulation, a weak bisimulation, and a branching
bisimulation between SmUni and SmUni ′′

CM = coin.coffee.CM
CS = pub.coin.coffee.CS

SmUni = (CM|CS)\{coin, coffee}

CM ′′ = coin.(sel.coffee.CM ′′+
coin.sel.latte.CM ′′)

CS ′′ = pub.coin.sel.coffee.CS ′′

SmUni ′′ = (CM ′′|CS ′′)\{coin, coffee, latte, sel}

25/40

mCRL2 Tools
Slides 10:

https://cister-labs.github.io/ramde2122/slides/10-mcrl2.pdf

26/40

https://cister-labs.github.io/ramde2122/slides/10-mcrl2.pdf

Realisability of Sequence Diagrams

Recall: Sequence Diagrams as Interactive Processes

• Objects as Processes
(e.g.,processes U, A, C , B)

• Send actions (e.g., insertCard)
• Reveive actions (e.g., insertCard)

• Unique action for each object
pair

• Do not write (. . . + 0)
27/40

Recall: Language of Sequence Diagrams, Informally

This example has only 1 word and its prefixes
Lsd = {insertCard · verifyCard · verifyAccount · accountNotOK ·

rejectedCard · ejectCard}

28/40

Recall: Sequence Diagrams as Interactive Processes

We can specify a SD as
interactive processes
Syslocal = (U|A|C |E)\ . . .

U = insertCard .ejectCart.0
A = . . .

C = . . .

E = . . .

29/40

Sequence Diagrams covered by Interactive Processes

• Sequence diagrams depict scenarios
(possible sequence of actions)

• Processes abstract implementations
(simplified view of concrete implementations)

Processes can do more
E.g., an ATM that also accepts cards can (and should) still support the rejection
scenario.

30/40

Observing the interactions

We want to observe interactions in such processes

Modified CCS semantics
(com1)

P α−→ P ′

P|Q α−→ P ′|Q

(com2)

Q α−→ Q′

P|Q α−→ P|Q′

(com3)

P a−→ P ′ Q a−→ Q′

P|Q τa−→ P ′|Q′

α ∈ N ∪ N ∪ {τa | a ∈ N} is an action

31/40

Language inclusion

Recall Syslocal from Slide 29 and its diagram sd .

Lsd = {iC · vC · cA · aN · rC · eC}
LSys = {τiC · τvC · τcA · τaN · τrC · τeC}

Language inclusion
P includes sd

iff
Lsd ⊆ LP†

P† modifies P’s LTS by:
filtering actions of sd and replacing τa by a

32/40

Are words enough?

Ex. 8.15: Let sd be the diagram above and recall Slide 29
Does Syslocal still includes sd if U is instead defined as below?

1. U = insertCard .ejectCard .0 + insertCard .0
2. U = (insertCard .ejectCard .0) + goAway .0)

33/40

Is language coverage enough?

Implementations can have:
• extra undesirable behaviour
• less behaviour

Alternative: change the inclusion/equivalence
Let SD = {sd1, sd2, . . .} be a set of sequence diagrams.

Language inclusion: LSD ⊆ LP†

Language equivalence: LSD = LP†

Similarity: NFA(SD) ≲ P†

Bisimilarity: NFA(SD) ∼ P†

34/40

Exercise

Ex. 8.16: Draw an NFA that captures the following diagram
s d Frame

loop loop

DataSourceDataControlUserInterface UserInterface DataControl DataSource

1.4: received

1.3: sendItem

2.5: sendUser

2.4: send

2.3: requestItem

2.2: send

2.1: requestSize

2: requestArray

1.5: sendUser

1.2: send

1.1: requestSize

1: requestArray

Visual Paradigm Standard(josé Proença(Instituto Superior de Engenharia do Porto))

35/40

Exercise

Ex. 8.17: Write a process for each object of the diagram
s d Frame

loop loop

DataSourceDataControlUserInterface UserInterface DataControl DataSource

1.4: received

1.3: sendItem

2.5: sendUser

2.4: send

2.3: requestItem

2.2: send

2.1: requestSize

2: requestArray

1.5: sendUser

1.2: send

1.1: requestSize

1: requestArray

Visual Paradigm Standard(josé Proença(Instituto Superior de Engenharia do Porto))

36/40

Realisability

Question: after encoding SD into processes:
Can we recover the behaviour of the original sequence diagram

by composing
the encoded processes?

Realisability
A set SD of sequence diagrams is realisable

iff

NFA(SD) ∼ Comp(Proc(SD))†

Proc(SD) returns the set of encoded processes for each sd ∈ SD
Comp(P1, P2, . . .) = (P1|P2| . . .)\{actions of SD}

37/40

Exercise

Ex. 8.18: Are the diagrams below realisable?s d Frame2

BankConsortiumATM BankConsortiumATM

2.3: compromised1.3: rejectCard

1.2: accountNotOK

1.1: verifyAccount

1: verifyCard

2.4: destroyCard

2.2: accountNotOK

2.1: verifyAccount

2: verifyCard

Visual Paradigm Standard(josé Proença(Instituto Superior de Engenharia do Porto))s d Frame2

BankConsortiumATM BankConsortiumATM

2.3: compromised1.3: rejectCard

1.2: accountNotOK

1.1: verifyAccount

1: verifyCard

2.4: destroyCard

2.2: accountNotOK

2.1: verifyAccount

2: verifyCard

Visual Paradigm Standard(josé Proença(Instituto Superior de Engenharia do Porto))

1. draw NFA(SD)
2. calculate Proc(SD)

Hint: B = vA.(aN.0 + aN.c.0)

3. draw Comp(·)
4. search for a bisimulation

Ex. 8.19: Verify if the diagram in
Slide 36 is realisable.

38/40

Exercise

Ex. 8.20: Verify if the diagram is realisable.
s d Frame

loop loop

DataSourceDataControlUserInterface UserInterface DataControl DataSource

1.4: received

1.3: sendItem

2.5: sendUser

2.4: send

2.3: requestItem

2.2: send

2.1: requestSize

2: requestArray

1.5: sendUser

1.2: send

1.1: requestSize

1: requestArray

Visual Paradigm Standard(josé Proença(Instituto Superior de Engenharia do Porto))

39/40

Curiosity

Realisability of sequence diagrams experiments:

https://arca.di.uminho.pt/choreo

40/40

https://arca.di.uminho.pt/choreo

	EQ1 – Language equivalence
	EQ2 – Similarity
	EQ3 – Bisimilarity
	Weak bisimilarity
	Realisability of Sequence Diagrams

