
7. Behavioural Modelling

David Pereira José Proença Eduardo Tovar
RAMDE 2021/2022
Requirements and Model-driven Engineering

CISTER – ISEP
Porto, Portugal

https://cister-labs.github.io/ramde2122

https://cister-labs.github.io/ramde2122

Overview

So far
• Models and properties for structures: boolean and 1st order logic, ...
• Useful, e.g., for UML class diagrams

Next
• Look at UML behaviour diagrams
• Use a domain with a precise semantics

• Non-deterministic finite automata (NFA)
• Simple language for processes
• Encode processes → NFA
• Equivalence of processes

s0 s1
a

b

2/35

What are formal methods?

Formal methods are techniques to

model complex systems using

rigorous mathematical models

Specification
Define part of the system
using a modelling
language

Verification
Prove properties.
Show correctness.
Find bugs.

Implementation
Generate correct code.

3/35

All formal models are wrong

... but some of them are usefull!

4/35

All formal models are wrong

... but some of them are usefull!

4/35

Syllabus

• High-level overview or requirements
and associated processes

• Mathematical Preliminaries
• Basic mathematical notations
• Set theory
• PropositionalLogic
• First Order Logic

• Behavioural modelling
• Single component

• State diagrams and Flow charts
• Formal modelling: Automata,

Process Algebra in mCRL2
• Many components

• Communication diagrams and
Sequence diagrams

• Formal modelling: Process
algebra with interactions

• Equivalences
• Verification

5/35

UML behaviour diagrams

UML behaviour diagrams

Describe the state of a component, what actions it can do, and how it evolves during
its life cycle.

• State Diagram focus on states
• Flowchart focus on actions (also known as activity diagrams)

6/35

Coffee State Diagram

7/35

Coffee Flowchart

Used symbols: processes, decisions, and
start/end

Other symbols include: data (or
input/output), documents, connectors,
comments

8/35

Automata – Basic definitions

Sequential and Reactive systems

Sequential systems

Meaning is defined by the results of
finite computations

Reactive systems

Meaning is determined by interaction
and mobility of non-terminating
processes, evolving concurrently

We start here. . . then we go reactive

9/35

Non-Deterministic Finite Automata (NFA)

Definition
A NFA over a set N of names is a tuple ⟨S, I, ↓, N, −→⟩ where

• S = {s0, s1, s2, ...} is a set of states

• I ⊆ S is the set of initial states

• ↓ ⊆ S is the set of terminating or final states

↓s ≡ s ∈ ↓

• −→ ⊆ S × N × S is the transition relation, often given as an N-indexed family of binary
relations

s a−→ s ′ ≡ ⟨s, a, s ′⟩ ∈−→

10/35

Example

Example of an automaton

s0 s1

a

b

s0 is an initial state
s1 is a final state

(Formalise this automata)

11/35

Exercise

Ex. 7.1: Formalise these automata as ⟨S, I, ↓, N, −→⟩

set

set

alarm

reset

set alarm

reset

12/35

A note on Homework

• 10% of the final mark
• focus on effort – doing badly is better than not doing
• submission: a PDF by email to the teacher who provided the exercises;

here pro@isep.ipp.pt.

Deadlines
Exercises presented in a given week must be submitted by the end of the following
week, Sunday @ 23h59.
Website/Teams will be kept up-to-date with ongoing open submissions.

13/35

Exercise

Ex. 7.2: Draw LTS
(suggestion: by hand on a paper, and take a photo of it.)

14/35

Labelled Transition System

More generally, a NFA ⟨S, I, ↓, N, −→⟩ is a labelled transition system (LTS) ⟨S, N, −→⟩, where
each state s ∈ S determines a system over all states reachable from s and the corresponding
restriction of −→.

LTS classification

• deterministic

• non deterministic

• finite

• finitely branching

• image finite

• ...

15/35

Reachability

Definition
The reachability relation, −→∗ ⊆ S × N∗ × S, is defined inductively

• s ϵ−→
∗

s for each s ∈ S, where ϵ ∈ N∗ denotes the empty word;

• if s a−→ s ′′ and s ′′ σ−→
∗

s ′ then s aσ−→
∗

s ′, for a ∈ N, σ ∈ N∗

Reachable state
t ∈ S is reachable from s ∈ S iff there is a word σ ∈ N∗ st s σ−→

∗
t

16/35

Language of an Automaton

Language
A word σ is in the language LA of an automata A = ⟨S, I, ↓, N, −→⟩

iff
there are states s ∈ I, s ′ ∈ ↓ such that s σ−→∗ s ′.

17/35

Exercises

Ex. 7.3: What is the language of this automata?

s0 s1 s2a b

Ex. 7.4: What is the language of this automata?

s0 s1 s2a b

b

Ex. 7.5: What is the language of this automata?

s0 s1 s2a b

c
18/35

Extra: Regular Expressions

Regular Expressions – syntax
• w1w2: word w1 followed by word w2

• w1 + w2: word w1 or word w2

• a∗: 0 or more a’s
• a+: 1 or more a’s
• ϵ: empty word

Examples
• ab + c: (a followed by b) or c
• (ab)∗b: b or abb or ababb or . . .

• c((ab)∗b)+: cb or cabb or cababb
or . . .

NFA vs. Reg. Expr.
Word w expressible by a NFA ⇔ w expressible by a Reg. Expr.

19/35

Extra: Regular Expressions

Regular Expressions – syntax
• w1w2: word w1 followed by word w2

• w1 + w2: word w1 or word w2

• a∗: 0 or more a’s
• a+: 1 or more a’s
• ϵ: empty word

Examples
• ab + c: (a followed by b) or c
• (ab)∗b: b or abb or ababb or . . .

• c((ab)∗b)+: cb or cabb or cababb
or . . .

NFA vs. Reg. Expr.
Word w expressible by a NFA ⇔ w expressible by a Reg. Expr.

19/35

Process algebra

Process algebras

Sequential CCS - Syntax

P ∋ P, Q ::= K | α.P | P + Q | 0 | P[f] | P\L | P|Q

where
- α ∈ N ∪ {τ} is an action
- K s a collection of process names or process constants
- L ⊆ N is a set of labels
- f is a function that renames actions s.t. f (τ) = τ

- notation:
[f] = [a1 7→ b1, . . . , an 7→ bn]

20/35

Process algebras

Syntax

P ∋ P, Q ::= K | α.P | P + Q | 0 | P[f] | P\L | P|Q

Ex. 7.6: Which are NOT syntactically correct? Why?

a.b.A + B (1)
(a.0 + b.A)\ {a, b, c} (2)
(a.0 + b.A)\ {a, τ} (3)
a.B + [b 7→ a] (4)
τ.τ.B + 0 (5)

a.(a + b).A (6)
(a.B + b.B)[a 7→ a, τ 7→ b] (7)
(a.B + τ.B)[b 7→ a, a 7→ a] (8)
(a.b.A + b.0).B (9)
(a.b.A + b.0) + B (10)

21/35

CCS semantics - building a NFA

(act)

α.P α−→ P

(sum-1)
P1

α−→ P ′
1

P1 + P2
α−→ P ′

1

(sum-2)
P2

α−→ P ′
2

P1 + P2
α−→ P ′

2

(res)
P α−→ P ′

P\L α−→ P ′\L
α /∈ L

(rel)
P α−→ P ′

P[f] f (α)−−−→ P ′[f]

• Initial states: the process being translated

• Final states: all states are final

• Language: possible sequence of actions of a process

Ex. 7.6: Build a derivation tree to prove the transitions below

1. (a.A + b.B) b−→ B

2. (a.b.A + (b.a.B + c.a.C)) b−→ a.B

3. ((a.B + b.A)[a 7→ c])\{a, b} c−→ (B[a 7→ c])\{a, b}

22/35

CCS semantics - building a NFA

(act)

α.P α−→ P

(sum-1)
P1

α−→ P ′
1

P1 + P2
α−→ P ′

1

(sum-2)
P2

α−→ P ′
2

P1 + P2
α−→ P ′

2

(res)
P α−→ P ′

P\L α−→ P ′\L
α /∈ L

(rel)
P α−→ P ′

P[f] f (α)−−−→ P ′[f]

Ex. 7.7: Build a derivation tree to prove the transitions below

1. (a.A + b.B) b−→ B

2. (a.b.A + (b.a.B + c.a.C)) b−→ a.B

3. ((a.B + b.A)[a 7→ c])\{a, b} c−→ (B[a 7→ c])\{a, b}

22/35

Exercise

Ex. 7.8: Draw the automata

CM = coin.coffee.CM
CS = pub.(coin.coffee.CS + coin.tea.CS)

Ex. 7.9: What is the language of the process A?

A = goLeft.A + goRight.B
B = rest.0

23/35

Exercise

Ex. 7.10: Write the process of the flowchart above
P = powerOn.Q

Q = selMocha.addChocolate.Mk + selLatte.Mk + . . .

Mk = addMilk . . .

24/35

mCRL2 Tools
Slides 10:

https://cister-labs.github.io/ramde2122/slides/10-mcrl2.pdf

25/35

https://cister-labs.github.io/ramde2122/slides/10-mcrl2.pdf

Concurrent Process algebra

Overview

Recall

1. Non-deterministic Finite Automata: q1 q2
a b

2. (Sequential) Process algebra: P = a.Q Q = b.Q
3. Meaning of (2) using (1)

Still missing
• Interaction between processes
• Interaction diagrams vs. interacting processes
• Enrich (2) and (3)

26/35

Process algebras

CCS - Updated Syntax

P ∋ P, Q ::= K | α.P | P + Q | 0 | P[f] | P\L | P|Q

where
- α ∈ N ∪ N ∪ {τ} is an action
- K s a collection of process names or process constants
- L ⊆ N is a set of labels
- f is a function that renames actions s.t. f (τ) = τ and f (a) = f (a)
- notation:

[f] = [a1 7→ b1, . . . , an 7→ bn] where ai , bi ∈ N ∪ {τ}

27/35

Process algebras

Syntax

P ∋ P, Q ::= K | α.P | P + Q | 0 | P[f] | P\L | P|Q

Ex. 7.11: Which are syntactically correct?

a.b.A + B (11)
(a.0 + a.A)\ {a, b} (12)
(a.0 + a.A)\ {a, τ} (13)
(a.0 + τ .A)\ {a} (14)
τ.τ.B + a.0 (15)
(0|0) + 0 (16)

(a.B + b.B)[a 7→ a, τ 7→ b] (17)
(a.B + τ.B)[b 7→ a, b 7→ a] (18)
(a.B + b.B)[a 7→ b, b 7→ a] (19)
(a.b.A + a.0)|B (20)
(a.b.A + a.0).B (21)
(a.b.A + a.0) + B (22)

28/35

CCS semantics - building an NFA

(act)

α.P α−→ P

(sum-1)
P1

α−→ P ′
1

P1 + P2
α−→ P ′

1

(sum-2)
P2

α−→ P ′
2

P1 + P2
α−→ P ′

2

(res)
P α−→ P ′

P\L α−→ P ′\L
α, α /∈ L

(rel)
P α−→ P ′

P[f] f (α)−−−→ P ′[f]

(com1)
P α−→ P ′

P|Q α−→ P ′|Q

(com2)
Q α−→ Q′

P|Q α−→ P|Q′

(com3)

P a−→ P ′ Q a−→ Q′

P|Q τ−→ P ′|Q′

Ex. 7.12: Draw the NFAs
CM = coin.coffee.CM
CS = pub.coin.coffee.CS

SmUni = (CM|CS)\{coin, coffee}

29/35

CCS semantics - building an NFA

(act)

α.P α−→ P

(sum-1)
P1

α−→ P ′
1

P1 + P2
α−→ P ′

1

(sum-2)
P2

α−→ P ′
2

P1 + P2
α−→ P ′

2

(res)
P α−→ P ′

P\L α−→ P ′\L
α, α /∈ L

(rel)
P α−→ P ′

P[f] f (α)−−−→ P ′[f]

(com1)
P α−→ P ′

P|Q α−→ P ′|Q

(com2)
Q α−→ Q′

P|Q α−→ P|Q′

(com3)

P a−→ P ′ Q a−→ Q′

P|Q τ−→ P ′|Q′

Ex. 7.12: Draw the NFAs
CM = coin.coffee.CM
CS = pub.coin.coffee.CS

SmUni = (CM|CS)\{coin, coffee} 29/35

Exercises

Ex. 7.13: Let A = b.a.B. Show that:
1. (A | b.0)\{b} τ−→ (a.B | 0)\{b}
2. (A | b.a.B) + ((b.A)[b 7→ a]) a−→ A[b 7→ a]

Ex. 7.14: Draw the NFAs A and D

A = x .B + x .x .C
B = x .x .A + y .C
C = x .A

D = x .x .x .D + x .E
E = x .F + y .F
F = x .A

30/35

mCRL2 Tools
Slides 10:

https://cister-labs.github.io/ramde2122/slides/10-mcrl2.pdf

31/35

https://cister-labs.github.io/ramde2122/slides/10-mcrl2.pdf

Sequence Diagrams vs. Interactive
Processes

Sequence Diagrams as Interactive Processes

• Objects as Processes (e.g., processes U, A, C , B)
• Send actions (e.g., insertCard)
• Reveive actions (e.g., insertCard)

32/35

Language of Sequence Diagrams, Informally

This example has only 1 word and its prefixes
Sysglobal = insertCard . verifyCard . verifyAccount . accountNotOK .

rejectedCard . ejectCard . 0

33/35

Sequence Diagrams as Interactive Processes

Ex. 7.15: Write an interactive
processes that act as the seq.
diagram.
Syslocal = (U|A|C |E)\ . . .

U = insertCard .ejectCart.0
A = . . .

C = . . .

E = . . .

34/35

Sequence Diagrams as Interactive Processes

Ex. 7.16: Write a single process
Sysglobal and a set of interactive
processes Syslocal that act as
the seq. diagram.
Sysglobal = insertCard

Syslocal = (U|A|C |E)\ . . .

U = . . .

A = . . .

C = . . .

E = . . .

35/35

	UML behaviour diagrams
	Automata – Basic definitions
	Process algebra
	Concurrent Process algebra
	Sequence Diagrams vs. Interactive Processes

