7. Behavioural Modelling

David Pereira José Proença Eduardo Tovar RAMDE 2021/2022 Requirements and Model-driven Engineering

CISTER – ISEP Porto, Portugal

https://cister-labs.github.io/ramde2122

Overview

So far

- Models and properties for structures: boolean and 1st order logic, ...
- Useful, e.g., for UML class diagrams

Next

- Look at UML behaviour diagrams
- Use a domain with a precise semantics
 - Non-deterministic finite automata (NFA)
 - Simple language for processes
 - Encode processes \rightarrow NFA
 - Equivalence of processes

Formal methods are techniques to model complex systems using rigorous mathematical models

Specification Define part of the system using a modelling language

Verification

Prove properties. Show correctness. Find bugs.

Implementation

Generate correct code.

All formal models are wrong

All formal models are wrong

... but some of them are usefull!

Syllabus

- High-level overview or requirements and associated processes
- Mathematical Preliminaries
 - Basic mathematical notations
 - Set theory
 - PropositionalLogic
 - First Order Logic

- Behavioural modelling
 - Single component
 - State diagrams and Flow charts
 - Formal modelling: Automata, Process Algebra in mCRL2
 - Many components
 - Communication diagrams and Sequence diagrams
 - Formal modelling: Process algebra with interactions
 - Equivalences
 - Verification

UML behaviour diagrams

Describe the state of a component, what actions it can do, and how it evolves during its life cycle.

- State Diagram focus on states
- Flowchart focus on actions (also known as *activity diagrams*)

Coffee State Diagram

Coffee Flowchart

Used symbols: *processes*, *decisions*, and *start/end*

Other symbols include: data (or input/output), documents, connectors, comments

Automata – Basic definitions

Sequential systems

Meaning is defined by the results of finite computations

Reactive systems

Meaning is determined by interaction and mobility of non-terminating processes, evolving concurrently

We start here...

then we go reactive

Definition

A NFA over a set N of names is a tuple $\langle S, I, \downarrow, N, \longrightarrow \rangle$ where

- $S = \{s_0, s_1, s_2, ...\}$ is a set of states
- $I \subseteq S$ is the set of initial states
- $\downarrow \subseteq S$ is the set of terminating or final states

 $\downarrow s \equiv s \in \downarrow$

• $\longrightarrow \subseteq S \times N \times S$ is the transition relation, often given as an *N*-indexed family of binary relations

$$s \stackrel{a}{\longrightarrow} s' \; \equiv \; \langle s, a, s'
angle \in \longrightarrow$$

Example

Example of an automaton

 s_0 is an initial state s_1 is a final state

(Formalise this automata)

Ex. 7.1: Formalise these automata as $\langle S, I, \downarrow, N, \longrightarrow \rangle$

- 10% of the final mark
- focus on effort doing badly is better than not doing
- submission: a PDF by email to the teacher who provided the exercises; here pro@isep.ipp.pt.

Deadlines

Exercises presented in a given week must be submitted by the end of the following week, Sunday @ 23h59.

Website/Teams will be kept up-to-date with ongoing open submissions.

Exercise

Ex. 7.2: Draw LTS

(suggestion: by hand on a paper, and take a photo of it.)

Labelled Transition System

More generally, a NFA $\langle S, I, \downarrow, N, \longrightarrow \rangle$ is a labelled transition system (LTS) $\langle S, N, \longrightarrow \rangle$, where each state $s \in S$ determines a system over all states reachable from s and the corresponding restriction of \longrightarrow .

LTS classification

- deterministic
- non deterministic
- finite
- finitely branching
- image finite
- · ...

Definition

The reachability relation, $\longrightarrow^* \subseteq S \times N^* \times S$, is defined inductively

• $s \xrightarrow{\epsilon} s$ for each $s \in S$, where $\epsilon \in N^*$ denotes the empty word;

• if
$$s \xrightarrow{a} s''$$
 and $s'' \xrightarrow{\sigma} s'$ then $s \xrightarrow{a\sigma} s'$, for $a \in N, \sigma \in N^*$

Reachable state

 $t \in S$ is reachable from $s \in S$ iff there is a word $\sigma \in N^*$ st $s \xrightarrow{\sigma}^* t$

Language

A word σ is in the language L_A of an automata $A = \langle S, I, \downarrow, N, \longrightarrow \rangle$ iff there are states $s \in I$, $s' \in \downarrow$ such that $s \xrightarrow{\sigma} * s'$.

Exercises

Ex. 7.3: What is the language of this automata?

Ex. 7.4: What is the language of this automata?

$$\longrightarrow \underbrace{(s_0) \qquad a \qquad (s_1) \qquad b \qquad (s_2)}^{b}$$

Ex. 7.5: What is the language of this automata?

Regular Expressions – syntax

- $w_1 w_2$: word w_1 followed by word w_2
- $w_1 + w_2$: word w_1 or word w_2
- *a**: 0 or more *a*'s
- *a*⁺: 1 or more *a*'s
- ϵ : empty word

Examples

- ab + c: (a followed by b) or c
- (ab)*b: b or abb or ababb or ...
- c((ab)*b)⁺: cb or cabb or cababb or ...

Regular Expressions – syntax

- $w_1 w_2$: word w_1 followed by word w_2
- $w_1 + w_2$: word w_1 or word w_2
- *a**: 0 or more *a*'s
- *a*⁺: 1 or more *a*'s
- ϵ : empty word

Examples

- ab + c: (a followed by b) or c
- (ab)*b: b or abb or ababb or ...
- c((ab)*b)⁺: cb or cabb or cababb or ...

NFA vs. Reg. Expr. Word *w* expressible by a NFA \Leftrightarrow *w* expressible by a Reg. Expr.

Process algebra

Sequential CCS - Syntax

 $\mathcal{P} \ni P, Q ::= K \mid \alpha.P \mid P+Q \mid \mathbf{0} \mid P[f] \mid P \setminus L \mid P|Q$

where

- $\alpha \in \mathbf{N} \cup \{\tau\}$ is an action
- K s a collection of process names or process constants
- $L \subseteq N$ is a set of labels
- f is a function that renames actions s.t. f(au) = au
- notation:

 $[f] = [a_1 \mapsto b_1, \ldots, a_n \mapsto b_n]$

Syntax

$\mathcal{P} \ni \mathcal{P}, \mathcal{Q} ::= \mathcal{K} \mid \alpha.\mathcal{P} \mid \mathcal{P} + \mathcal{Q} \mid \mathbf{0} \mid \mathcal{P}[f] \mid \mathcal{P} \setminus \mathcal{L} \mid \mathcal{P}|\mathcal{Q}$

Ex. 7.6: Which are NOT syntactically correct? Why?

a.b.A + B	(1)	a.(a+b).A	(6)
$(a.0+b.A) \setminus \{a,b,c\}$	(2)	$(a.B+b.B)[a\mapsto a, au\mapsto b]$	(7)
$(a.0+b.A) \setminus \{a, \tau\}$	(3)	$(a.B+ au.B)[b\mapsto a,a\mapsto a]$	(8)
$a.B + [b \mapsto a]$	(4)	(a.b.A+b. 0).B	(9)
au. au.B + 0	(5)	(a.b.A+b. 0)+B	(10)

CCS semantics - building a NFA

$$\frac{(\operatorname{act})}{\alpha . P \xrightarrow{\alpha} P} \xrightarrow{(\operatorname{sum-1})} P_{1} \xrightarrow{\alpha} P_{1}' \qquad (\operatorname{sum-2}) \\
\underbrace{P_{1} \xrightarrow{\alpha} P_{1}'}_{P_{1} + P_{2} \xrightarrow{\alpha} P_{1}'} \qquad \underbrace{P_{2} \xrightarrow{\alpha} P_{2}'}_{P_{1} + P_{2} \xrightarrow{\alpha} P_{2}'} \\
\underbrace{P_{1} + P_{2} \xrightarrow{\alpha} P_{2}'}_{P_{1} + P_{2} \xrightarrow{\alpha} P_{2}'} \\
\underbrace{P_{1} + P_{2} \xrightarrow{\alpha} P_{2}'}_{P_{1} + P_{2} \xrightarrow{\alpha} P_{2}'} \\
\underbrace{P_{1} + P_{2} \xrightarrow{\alpha} P_{2}'}_{P_{1} + P_{2} \xrightarrow{\alpha} P_{2}'} \\
\underbrace{P_{1} + P_{2} \xrightarrow{\alpha} P_{2}'}_{P_{1} + P_{2} \xrightarrow{\alpha} P_{2}'} \\
\underbrace{P_{1} + P_{2} \xrightarrow{\alpha} P_{2}'}_{P_{1} + P_{2} \xrightarrow{\alpha} P_{2}'} \\
\underbrace{P_{1} + P_{2} \xrightarrow{\alpha} P_{2}'}_{P_{1} + P_{2} \xrightarrow{\alpha} P_{2}'} \\
\underbrace{P_{1} + P_{2} \xrightarrow{\alpha} P_{2}'}_{P_{1} + P_{2} \xrightarrow{\alpha} P_{2}'} \\
\underbrace{P_{1} + P_{2} \xrightarrow{\alpha} P_{2}'}_{P_{1} + P_{2} \xrightarrow{\alpha} P_{2}'} \\
\underbrace{P_{2} \xrightarrow{\alpha} P_{2}'}_{P_{2} + P_$$

- Initial states: the process being translated
- Final states: all states are final
- Language: possible sequence of actions of a process

CCS semantics - building a NFA

Ex. 7.7: Build a derivation tree to prove the transitions below

1. $(a.A + b.B) \xrightarrow{b} B$ 2. $(a.b.A + (b.a.B + c.a.C)) \xrightarrow{b} a.B$ 3. $((a.B + b.A)[a \mapsto c]) \setminus \{a, b\} \xrightarrow{c} (B[a \mapsto c]) \setminus \{a, b\}$ Exercise

Ex. 7.8: Draw the automata

CM = coin.coffee.CM
CS = pub.(coin.coffee.CS + coin.tea.CS)

Ex. 7.9: What is the language of the process A?

A = goLeft.A + goRight.BB = rest.0

Exercise

Ex. 7.10: Write the process of the flowchart above

- P = powerOn.Q
- Q = selMocha.addChocolate.Mk + selLatte.Mk + ...
- Mk = addMilk...

mCRL2 Tools

Slides 10:

https://cister-labs.github.io/ramde2122/slides/10-mcrl2.pdf

Concurrent Process algebra

Overview

Recall

- 1. Non-deterministic Finite Automata: $\rightarrow q_1 \xrightarrow{a} q_2 \xrightarrow{} b$
- 2. (Sequential) Process algebra: P = a.Q Q = b.Q
- 3. Meaning of (2) using (1)

Still missing

- Interaction between processes
- Interaction diagrams vs. interacting processes
- Enrich (2) and (3)

CCS - Updated Syntax

 $\mathcal{P} \ni P, Q ::= K \mid \alpha.P \mid P+Q \mid \mathbf{0} \mid P[f] \mid P \setminus L \mid P|Q$

where

- $\alpha \in \mathbb{N} \cup \overline{\mathbb{N}} \cup \{\tau\}$ is an action
- K s a collection of process names or process constants
- $L \subseteq N$ is a set of labels
- f is a function that renames actions s.t. $f(\tau) = \tau$ and $f(\overline{a}) = \overline{f(a)}$

- notation:

 $[f] = [a_1 \mapsto b_1, \dots, a_n \mapsto b_n] \quad \text{where } a_i, b_i \in \mathsf{N} \cup \{\tau\}$

Syntax

 $\mathcal{P} \ni P, Q ::= K \mid \alpha.P \mid P+Q \mid \mathbf{0} \mid P[f] \mid P \setminus L \mid P|Q$

Ex. 7.11: Which are syntactically correct?

$a.\overline{b}.A+B$	(11)	$(a.B+b.B)[a\mapsto a, au\mapsto b]$	(17)
$(a.0+\overline{a}.A)ackslash\{\overline{a},b\}$	(12)	$(a.B+ au.B)[b\mapsto a,b\mapsto a]$	(18)
$(a.0+\overline{a}.A)ackslash\{a, au\}$	(13)	$(a.B+b.B)[a\mapsto b,b\mapsto \overline{a}]$	(19)
$(a.0+\overline{ au}.A)ackslash\{a\}$	(14)	$(a.b.A + \overline{a}.0) B$	(20)
$ au. au.B+\overline{a}.0$	(15)	$(a.b.A + \overline{a}.0).B$	(21)
(0 0)+ 0	(16)	$(a.b.A + \overline{a}.0) + B$	(22)

CCS semantics - building an NFA

(act) $\alpha.P \xrightarrow{\alpha} P$	$(sum-1) \\ P_1 \xrightarrow{\alpha} P'_1 \\ \hline P_1 + P_2 \xrightarrow{\alpha} P'_1$	$(sum-2)$ $P_2 \xrightarrow{\alpha} P'_2$ $P_1 + P_2 \xrightarrow{\alpha} P'_2$
(res) $P \xrightarrow{\alpha} P'$ $P \setminus L \xrightarrow{\alpha} P' \setminus$	$\underline{\alpha}, \overline{\alpha} \notin L$	$ \begin{array}{c} (\text{rel}) \\ P \xrightarrow{\alpha} P' \\ \hline P[f] \xrightarrow{f(\alpha)} P'[f] \end{array} $
$(com1) \\ P \xrightarrow{\alpha} P'$	$\stackrel{(com2)}{Q \xrightarrow{\alpha} Q'}$	(com3) $P \xrightarrow{a} P' Q \xrightarrow{\overline{a}} Q'$
$P Q \xrightarrow{lpha} P' Q$	$P Q \xrightarrow{lpha} P Q'$	$P Q \xrightarrow{ au} P' Q'$

CCS semantics - building an NFA

	(act) $\alpha.P \xrightarrow{\alpha} P$	$(sum-1)$ $P_1 \xrightarrow{\alpha} P'_1$ $P_1 + P_2 \xrightarrow{\alpha} P'_1$	$(sum-2)$ $P_2 \xrightarrow{\alpha} P'_2$ $P_1 + P_2 \xrightarrow{\alpha} P'_2$
	$(res) P \xrightarrow{\alpha} P' P \backslash L \xrightarrow{\alpha} P' \land$	$\underline{\alpha}, \overline{\alpha} \notin L$	$\begin{array}{c} (rel) \\ P \xrightarrow{\alpha} P' \\ \hline P[f] \xrightarrow{f(\alpha)} P'[f] \end{array}$
- Ex. 7.12: Drav	$(com1)$ $P \xrightarrow{\alpha} P'$ $P Q \xrightarrow{\alpha} P' Q$ v the NFAs	$(\text{com2}) \\ Q \xrightarrow{\alpha} Q' \\ \hline P Q \xrightarrow{\alpha} P Q'$	(com3) $P \xrightarrow{a} P' Q \xrightarrow{\overline{a}} Q'$ $P Q \xrightarrow{\tau} P' Q'$
	CA C	$M = \text{coin.}\overline{\text{coffee}}.C$ $S = \text{pub.}\overline{\text{coin.}}$ coff	M ee. <i>CS</i>

 $\textit{SmUni} = (\textit{CM}|\textit{CS}) \backslash \{\text{coin}, \text{coffee}\}$

Ex. 7.13: Let A = b.a.B. Show that:

1.
$$(A \mid \overline{b}.\mathbf{0}) \setminus \{b\} \xrightarrow{\tau} (a.B \mid \mathbf{0}) \setminus \{b\}$$

2.
$$(A \mid b.a.B) + ((b.A)[b \mapsto a]) \xrightarrow{a} A[b \mapsto a]$$

Ex. 7.14: Draw the NFAs A and D

A = x.B + x.x.C	D = x.x.x.D + x.E
B = x.x.A + y.C	E = x.F + y.F
C = x.A	F = x.A

mCRL2 Tools

Slides 10:

https://cister-labs.github.io/ramde2122/slides/10-mcrl2.pdf

Sequence Diagrams vs. Interactive Processes

Sequence Diagrams as Interactive Processes

- Objects as Processes (e.g., processes U, A, C, B)
- Send actions (e.g., *insertCard*)
- Reveive actions (e.g., *insertCard*)

Language of Sequence Diagrams, Informally

This example has only 1 word and its prefixes

Sys_{global} = insertCard . verifyCard . verifyAccount . accountNotOK . rejectedCard . ejectCard . **0**

Ex. 7.15: Write an interactive processes that act as the seq. diagram. $Sys_{local} = (U|A|C|E) \setminus \dots$ U = insertCard.ejectCart.0

$$Sys_{local} = (U|A|C|E) \setminus \dots$$
$$U = \overline{insertCard}.ejectCart.\mathbf{0}$$
$$A = \dots$$
$$C = \dots$$
$$E = \dots$$

Sequence Diagrams as Interactive Processes

Ex. 7.16: Write a single process Sys_{global} and a set of interactive processes Sys_{local} that act as the seq. diagram. $Sys_{global} = insertCard$

$$Sys_{local} = (U|A|C|E) \setminus \dots$$
$$U = \dots$$
$$A = \dots$$
$$C = \dots$$
$$E = \dots$$