3. Propositional Logic – Exercises

David Pereira José Proença Eduardo Tovar RAMDE 2021/2022 Requirements and Model-driven Engineering

CISTER – ISEP Porto, Portugal

https://cister-labs.github.io/ramde2122

Propositional Logic - Practicing Natural Deduction

Natural Deduction Rules

Last RAMDE's class...

On the last class, you were introduced to Propositional Logic:

- its syntax and semantics
- normal forms: negative, disjunctive, and conjunctive
- rules for natural deduction

During this class...

You will be exposed to the practice of construction proofs about Propositional Logic's formulae using Natural Deduction

Warning: Becoming comfortable with this type of mathematics is not an easy task! Bare with me and be pattient! Train a lot by doing the exercises at home once again, to start solidifying the types of proof patterns that naturally will appear...

Introduction

If we know that both φ and ψ is hold, then so does their conjunction.

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi} \wedge |$$

Elimination

If know that $\varphi \wedge \psi$, then we can conclude that either of them also holds in isolation.

$$\frac{\varphi \wedge \psi}{\varphi} \wedge \mathbf{E}$$

$$\frac{\varphi \wedge \psi}{\psi} \wedge \mathbf{E}_r$$

Exercise

Prove that if $\varphi \wedge \psi$ holds, then $\psi \wedge \varphi$ also holds. That is $\varphi \wedge \psi \vdash \psi \wedge \varphi$

1
$$\varphi \land \psi$$

2 $\varphi \land \mathsf{E}_{I}(1)$
3 $\psi \land \mathsf{E}_{r}(1)$
4 $\psi \land \varphi \land \mathsf{I}(2,3)$

Recalling the rules of introduction and elimination: disjunction

Introduction

We can construct a new disjunction $\varphi \lor \psi$ if we know that either φ or ψ hold.

$$\frac{\varphi}{\varphi \lor \psi} \lor \mathbf{I}_{I} \qquad \qquad \frac{\psi}{\varphi \lor \psi} \lor \mathbf{I}_{I}$$

Elimination

The elimination, in this case, assumes the form of introducing a new formula θ in case we can derive θ from both φ and ψ , and we know that $\varphi \lor \psi$ holds.

$$\begin{array}{ccc} [\varphi] & [\psi] \\ \vdots & \vdots \\ \frac{\varphi \lor \psi & \theta & \theta}{\theta} \lor \mathbf{E} \end{array}$$

Quick exercise

Exercise

Prove that if $(\varphi \lor \psi) \land \theta$ holds, then $(\varphi \land \theta) \lor (\psi \land \theta)$ also holds.

1	$(\varphi \lor \psi) \land \theta$				
2	$\varphi \vee \psi$	$\wedge {f E}_l(1)$:	
3	θ	$\wedge \mathbf{E}_r(1)$	7	ψ	
4	φ		8	$\psi \wedge heta$	\wedge I(8,3)
5	$arphi\wedge heta$	\wedge I(4,3)	9	$(\varphi \wedge \theta) \vee (\psi \wedge \theta)$	$\vee I_r(8)$
6	$(arphi\wedge heta)ee(\psi\wedge heta)$	$\vee \mathbf{I}_{l}(5)$	10	$(arphi\wedge heta)ee(\psi\wedge heta)$	\vee E (2, 4-6, 7-9)
	÷				

Recalling the rules of introduction and elimination: Negation

Introduction

If we can derive false from φ , then we can conclude that φ does not hold, that is, its negation $\neg \varphi$ holds.

Elimination

If we know that $\neg\varphi$ is false, then ew can conclude that φ holds.

$$\frac{\neg \neg \varphi}{\varphi} \neg \mathbf{E}$$

Recalling the rules of introduction and elimination: False

Introduction

If we assume φ and, still, we are able to derive $\neg \varphi$, then we can conclude false. In fact, we found a contradiction!

Elimination

From false, ew can conclude anything!

$$\frac{\bot}{\varphi} \bot \mathbf{E}$$

Exercise

Prove that if $\neg(\varphi \lor \psi)$ holds, then $\neg \varphi \land \neg \psi$ also holds.

Natural Deduction Rules - Implication

Introduction of implication

If we assume φ and we can derive ψ from it, then we can conclude that $\varphi \to \psi.$

Elimination of implementation

From false, we can conclude whatever we want.

$$\frac{\varphi \to \psi \qquad \varphi}{\psi} \to \mathbf{E}$$

Quick exercise

Exercise

Prove that if $(\varphi \lor \psi) \to \theta$ and φ hold, then $\psi \to \theta$ also holds.

$$1 \qquad (\varphi \lor \psi) \rightarrow \theta$$

$$2 \qquad \varphi$$

$$3 \qquad \psi$$

$$4 \qquad \varphi \lor \psi \qquad \lor \mathbf{I}_{I}(2)$$

$$5 \qquad \theta \qquad \rightarrow \mathbf{E}(1, 4)$$

$$6 \qquad \psi \rightarrow \theta \qquad \rightarrow \mathbf{I}(3-5)$$

Natural Deduction Rules - Derived rules

$$\frac{\varphi \to \psi \quad \neg \psi}{\neg \varphi} \mathbf{MT}$$
$$\begin{bmatrix} \neg \varphi \end{bmatrix}$$
$$\vdots$$
$$\frac{\bot}{\varphi} \mathbf{RA}$$

$$\frac{\varphi}{\neg \neg \varphi} \neg \neg \mathbf{I}$$

$$\overline{\varphi \vee \neg \varphi}$$
 ET

Lets prove the derived rules?

Exercise

Prove that $\varphi \to \psi, \neg \psi \vdash \neg \varphi$

Exercise

Prove that $\varphi \vdash \neg \neg \varphi$

Lets prove the derived rules?

Exercise

Prove that $\neg \varphi \rightarrow F \vdash \varphi$

1
$$\neg \varphi \rightarrow F$$

2 $| \neg \varphi$
3 $| F \perp I(1,2)$
4 $\neg \neg \varphi \quad \neg I(2-3)$
5 $\varphi \quad \neg E(4)$

Lets prove the derived rules?

Exercise

Whatever φ we have $\vdash \varphi \vee \neg \varphi$

1
$$\neg(\varphi \lor \neg \varphi)$$
2
$$\begin{vmatrix} \varphi \\ \varphi \lor \neg \varphi \\ \forall I_r(2) \\ 4 \\ \downarrow \\ \downarrow \\ 1(1,3) \\ 5 \\ \neg \varphi \\ \neg \varphi \\ \forall I_l(2-4) \\ 6 \\ \varphi \lor \neg \varphi \\ \forall I_l(5) \\ \end{vmatrix}$$

	:	
7		$ot{I}(1,6)$
3	$\neg\neg(\varphi \vee \neg\varphi)$	$ eg \mathbf{I}(1{-7})$
Ð	$\varphi \vee \neg \varphi$	¬E (8)

Lets continue with more exercises

Exercise

Build the derivations for each of the statements below:

- $\vdash (\varphi \land \psi) \rightarrow \psi$
- $\vdash \varphi \rightarrow (\varphi \lor \psi)$
- $\vdash (\varphi \lor \psi) \to (\psi \lor \varphi)$
- $\theta \to (\varphi \to \psi), \neg \psi, \theta \vdash \neg \varphi$
- $\theta, \neg \varphi \vdash \neg (\theta \rightarrow \varphi)$
- $(\psi \land \theta) \to \neg \delta, \varphi \to \delta, \theta, \varphi \vdash \neg \psi$
- $(\psi \to \varphi) \land (\varphi \to \psi) \vdash (\varphi \land \psi) \lor (\neg \varphi \land \neg \psi)$

Solutions for each of the statements are given in the slides that follow...

$$\begin{array}{c|cccc} 1 & & \varphi \wedge \psi \\ 2 & & \psi \\ 3 & & (\varphi \wedge \psi) \rightarrow \psi & \rightarrow \mathbf{I}(1-2) \end{array}$$

Solution for $\vdash (\varphi \lor \psi) \rightarrow (\psi \lor \varphi)$

Solution for $\theta \to (\varphi \to \overline{\psi}), \neg \psi, \theta \vdash \neg \varphi$

1	$\varphi \to \psi$	
2	$\neg\psi$	
3	θ	
4	φ	
5	ψ	$ ightarrow {\sf E}(1,4)$
6		\perp I(2,5)
7	$\neg \varphi$	$ egreent \neg I(4-6)$

Solution for $\theta, \neg \varphi \vdash \neg (\theta \rightarrow \varphi)$

Solution for $(\psi \land \theta) \rightarrow \neg \delta, \varphi \rightarrow \overline{\delta, \theta, \varphi} \vdash \neg \psi$

1

1	$(\psi \wedge \theta) \rightarrow \neg \theta$	5			
2	$\varphi \to \delta$				
3	θ			:	
4	φ		8	δ	$ ightarrow {f E}(2,4)$
			9		$ot{I}(7,8)$
5	ψ		10	$\neg\psi$	$ egreen \mathbf{I}(5-9)$
6	$\psi \wedge heta$	\wedge I(5,3)			
7	$\neg \delta$	$ ightarrow {f E}(1,6)$			

Solution for $(\psi \to \varphi) \land (\varphi \to \psi) \vdash (\varphi \land \psi) \lor (\neg \varphi \land \neg \psi)$ (I)

Solution for $(\psi \to \varphi) \land (\varphi \to \psi) \vdash (\varphi \land \psi) \lor (\neg \varphi \land \neg \psi)$ (II)

Solution for $(\psi \to \varphi) \land (\varphi \to \psi) \vdash (\varphi \land \psi) \lor (\neg \varphi \land \neg \psi)$ (III)

$$\begin{vmatrix} \vdots \\ \neg \varphi \wedge \neg \psi & \wedge \mathbf{I}(10, 16) \\ 18 & (\varphi \wedge \psi) \vee (\neg \varphi \wedge \neg \psi) & \vee \mathbf{I}_r(17) \\ 19 & \bot & \pm \mathbf{I}(4, 18) \\ 20 & \neg \neg ((\varphi \wedge \psi) \vee (\neg \varphi \wedge \neg \psi)) & \neg \mathbf{I}(4-19) \\ 21 & (\varphi \wedge \psi) \vee (\neg \varphi \wedge \neg \psi) & \neg \mathbf{E}(20) \end{vmatrix}$$