
Set Theory
&

Propositional Logic

David Pereira

CISTER Research Centre / DEI - ISEP , P.Porto

October 27, 2021

Set Theory Propositional Logic

What is in the menu for today?

Set Theory

Propositional Logic

2 / 42

Set Theory Propositional Logic

Table of Contents

Set Theory

Propositional Logic

3 / 42

Set Theory Propositional Logic

What is a set?

Definition
Sets are collections of elements, elements of which can be of any kind of
mathematical object, e.g., integers, symbols, variables, other sets, etc.

Example
Some examples of sets that relate to requirements specification:
▶ all the oceans on earth
▶ the passwords that may be generated by a certain cryptographic algorithm
▶ the log files produced by a set of monitors
▶ the virtual machines and containers to be deployed in a certain cloud environment
▶ . . .

4 / 42

Set Theory Propositional Logic

Defining sets and set membership
If the set is small...
... we can define it by extension, that is, we enumerate all its elements. We use braces ’{’ and ’}’ to
delimit the set, and use ’,’ to separate its elements. For instance, we can represent all the oceans
on earth as follows:

Oceans = {Atlantic, Pacific, Indian, Arctic}

Finiteness and cardinality
A set can be finite, if the number of its elements is also finite; otherwise the set is infinite.
When the set is finite, its size, or cardinality is denoted by |S|.

Set membership
If S is a set, and x an element whose type is the same as the elements of S, then we denote by
x ∈ S the relation of x being a member of S. We can also state that ”x is in S”

Atlantic ∈ Oceans, Mediterranean ̸∈ Oceans
5 / 42

Set Theory Propositional Logic

Set equality

Extensionality
Two sets S and T are equal, which we denote by S = T, if and only if they have the same
elements, that is:

1. if for all x we have x ∈ S then x ∈ T, and
2. if for all y we have y ∈ T then y ∈ S.

We can establish a rule helps synthesise the above condition, and that guides reasoning:

(∀x, x ∈ S → x ∈ T) ∧ (∀x, x ∈ T → x ∈ S)
S = T

Another view on set membership (extensionality of membership)
If x = e1 or x = e2 or . . . or x = en, then it holds that x ∈ {e1, e2, . . . , en}.

6 / 42

Set Theory Propositional Logic

The empty set and other set relations

Definition
A set S is said to be empty, denoted S = ∅, if it has no elements.
If S = ∅, then for all elements x, x ̸∈ S.

Subset
If we know that all members x of a set S are also members of a set T, then we say that S is a
subset of T, which we denote this relation by S ⊆ T.

Subset and set equality
Let S and T be two sets such that S ⊆ T and T ⊆ S holds. Then, S = T holds.

7 / 42

Set Theory Propositional Logic

Set Comprehension
Definition
If S is a set andP is a property, then we can build a new set T from S by selecting only those for
whichP holds. We say that in this case we define T by set comprehension and denote it by

{x ∈ S | P}.

We can informally state that the left part x ∈ S represents a ”generator” whereas the right part
(P) represents a filter.

Extending set comprehension
With the notion of set comprehension we can generate a new set from a given set S, a property
P and a function that produces a new value from the elements of S that satisfyP . Let f be such
a function. Then we denote this extended notion of comprehension by

{x ∈ S | P • f}.
8 / 42

Set Theory Propositional Logic

Example

Let S represent the set of all ISEP’s students. Let MESCC be the property of being enrolled in
MESCC and RAMDE be the property of being enrolled in RAMDE. Hence, we can define the set
of all of the MESCC’s students that are attending RAMDE’s classes:

SRAMDE = {s ∈ S | MESCC(s) and RAMDE(s)}

We might be interested in getting some statistics, e.g., gender balance. Assuming a function
gender that maps names into either male or female, we can define

GBRAMDE = {s ∈ S | MESCC(s) and RAMDE(s) • gender},

or simply by
GBRAMDE = {s ∈ SRAMDE | True • gender}

9 / 42

Set Theory Propositional Logic

Lets look at some examples

Example
Let S be the set of natural numbers smaller or equal to 10. We can represent this as a set
comprehension expression as follows

S = {x ∈ N | x ≤ 10}

. We can also write this easily in Python

> > > S = s e t (r a n g e (1 1))
> > > S
{ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 }

10 / 42

Set Theory Propositional Logic

Lets look at some more simple examples

Example
Lets use S to build a new subset of it, the set of even natural numbers smaller or equal than 10.
We express this set by comprehension as follows

Even10 = {x ∈ S | x mod 2 ≡ 0},

or in Python:

> > > e v e n 1 0 = [x f o r x i n S i f x%2 == 0]
> > > e v e n 1 0
{ 2 , 4 , 6 , 8 , 1 0 }

11 / 42

Set Theory Propositional Logic

Lets look at some more simple examples

Example
Now we have the set enve10 that contains all the even natural numbers that are lower or equal
to 10. Using the extended set comprehension notation, we can build a new set that, for
instance, has the doubles of the values of even10. We define it simply by assuming a function
f(x) = x × 2 and defining

Double_Even10 = {x ∈ S | x mod 2 ≡ 0 • f},

or in Python:

> > > e v e n 1 0 = [x *2 f o r x i n S i f x%2 == 0]
> > > e v e n 1 0
{ 4 , 8 , 1 2 , 1 6 , 2 0 }

12 / 42

Set Theory Propositional Logic

Set Operations - intersection and union

Intersection
The intersection of two sets S and T is denoted by S ∩ T and is the set with the elements that are
common to both sets. If the sets are disjoint, then S ∩ T = ∅.

x ∈ (S ∩ T)
x ∈ S ∧ x ∈ T

Union
The union of two sets S and T is denoted by S ∪ T and is the set containing all the elements of S
and all the elements of T.

x ∈ (S ∪ T)
x ∈ S ∨ x ∈ T

13 / 42

Set Theory Propositional Logic

Examples

Example (Intersection)

Example (Union)

14 / 42

Set Theory Propositional Logic

Set Operations - difference

Difference
The difference between two sets is denoted by S\T and refers to the set with all the elements of
S that are not members of T.

x ∈ (S\T)
x ∈ S ∧ x ̸∈ T

Example (Small exercise)
Let S = {1, 2, . . . , 10} and let T = {0, 1, 2, . . . , 10}. Then, depending on the way we
calculate the difference between these sets, we get different results:

T\S = {0} but S\T = ∅

15 / 42

Set Theory Propositional Logic

Powerset

Definition
The powerset of a set S, denotedP(S), is the set containing all the subsets of S.

Example (Simple exercise)
Let S = {0, 1}. ThenP(S) = {∅, {0}, {1}, {0, 1}}

A note on finite sets and cardinality
If S is a finite set, then we denote its cardinality by |S|. In the case of the powerset, if |S| = n,
then |P(S)| = 2n.

A logical rule for the powerset

S ⊆ T
S ∈ P(T)

16 / 42

Set Theory Propositional Logic

Cartesian Product

Definition
If S and T are sets, then their cartesian product S × T is formed by the set of all pairs (x, y) such
that x ∈ S and y ∈ T.

Tuples and n-tuples
We can extend the cartesian product to more than two sets. That is, consider sets S1, . . . , Sn
where n > 2. The elements of this product S1 × · · · Sn are called n-tuples and have the form
(x1, . . . , xn) such that x1 ∈ S1, x2 ∈ S2, and so forth.

A rule for reasoning about cartesian products...

x1 ∈ S1 ∧ · · · ∧ xn ∈ Sn

(x1, . . . , xn) ∈ S1 × · · · × Sn

17 / 42

Set Theory Propositional Logic

Exercising a little bit

Lets recall the first examples of sets mentioned during the class:
1. all the oceans on earth⇒we already solved this one!
2. the passwords that may be generated by a certain cryptographic algorithm
3. the log files produced by a set of monitors
4. the virtual machines and containers to be deployed in a certain cloud environment

Exercise
Formalize each of the examples presented above.

18 / 42

Set Theory Propositional Logic

Exercising a little bit

the passwords that may be generated by a certain cryptographic algorithm

This requirement is far too abstract. Since there is no more information of the domain, we
assume a component that takes as inputs identifiers of users from a set I, and returns
passwords for from a set P, using a cryptographic algorithm A.

Passwd = {p ∈ P | ∃ id ∈ I, A(id) = p}

or, alternatively,
Passwd = {id ∈ I | True • A(id)}

19 / 42

Set Theory Propositional Logic

Exercising a little bit

the log files produced by a set of monitors

To formalize this requirement, we need a way to have access to monitors in order to obtain the
list of associated log files. If M is the set of monitors, and a log file is denoted by its name, i.e., a
string, we assume such a function logs : M → String.
The set of all log files produced by a set of monitors, in this case M, is

Logs = {m ∈ M • logs(m)}

20 / 42

Set Theory Propositional Logic

Exercising a little bit

the containers to be deployed in a certain cloud environment

We assume two properties on the containers: (i) that a container can be check for sucessful
deployment in a given clud platform; (ii) that it is planned for deployment already. So, lets
assume the properties:
▶ isdep(c, i)meaning that container c is deployable on cloud infrastructure i,
▶ planned(c)meaning that the deployment of c is planned to occur.

Then, we can define our set as follows:

DC = {c ∈ C | ∃i, isdep(c, i) and planned(c)}

21 / 42

Set Theory Propositional Logic

Table of Contents

Set Theory

Propositional Logic

22 / 42

Set Theory Propositional Logic

Propositional Logic - Syntax

Syntax
LetB = {b0, b1, . . .} be a set of (truth/Boolean) varibles and C = {¬,∧} be a set of logical
connectives. The language of propositional logic, denotedLP, is recursively/inductively
defined by:

φ,φ1, φ2 ::= ⊤ | b ∈ B | ¬φ | φ1 ∧ φ2

The remaining logical operators are defined as follows:
▶ (False)⊥ ≡ ¬⊤
▶ (Disjunction)φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2)

▶ (Implication)φ1 → φ2 ≡ ¬φ1 ∨ φ2

▶ (Equivalence)φ1 ↔ (φ1 → φ2) ∧ (φ2 → φ1)

23 / 42

Set Theory Propositional Logic

Propositional Logic - Semantics

Truth valuations
LetB = {b, b0, b1, . . .} be a set of variables and letB = {tt, ff} the set of truth
values/constants. A valuation function is a function v : B → B that associates values inB to
variables inB.

Formula evaluation
Considering the truth valuation v : B → B, the evaluation of the truth value of a formula inLLP
is given by the recursive function fLP : LLP → B, defined as follows:
▶ fLP(⊤) = tt
▶ fLP(b) = v(b)
▶ fLP(¬φ) = ¬fLP(φ)

▶ fLP(φ1 ∧ φ2) = fLP(φ) ∧ fLP(φ2)

24 / 42

Set Theory Propositional Logic

Propositional Logic - Semantics

Satisfiability
Letφ be aLLP formula. We say thatφ is satisfiable if, and only if there exists a valuation
v : B → B for variables inφ such that fLP(φ) = tt.

Example
Let b0, b1 ∈ B and letφ = b0 ∨ b1. Whenever we have f(b0) = tt, or f(b1) = tt, or both,
then we also have fLP(φ) = tt

b0 b1 fLP(φ)

ff ff ff
ff tt tt
tt ff tt
tt tt tt

25 / 42

Set Theory Propositional Logic

Propositional Logic - Semantics

Validity
A formulaφ is said to be valid if, and only if fLP(φ) = tt for all valuation function v : B → B.

Example
Let b ∈ B and letφ = b ∨ ¬b. Whatever the attribution of truth values to b by a valuation
function f, we always get fLP(φ) = tt

b0 b1 fLP(φ)

ff ff tt
ff tt tt
tt ff tt
tt tt tt

Note: recall thatφ ∨ ψ holds if at least one of the formulae holds.

26 / 42

Set Theory Propositional Logic

Propositional Logic - Semantics
Contradiction
A formulaφ ∈ LLP is called a contradiction if, and only if fLP(φ) = ff for all possible valuation
function v : B → B.

Example
Let b ∈ B and letφ = b ∧ ¬b. Whatever the attribution of truth values to b by a valuation
function f, we always get fLP(φ) = ff

b0 b1 fLP(φ)

ff ff ff
ff tt ff
tt ff ff
tt tt ff

Note: recall thatφ ∧ ψ holds if both formulas hold.
27 / 42

Set Theory Propositional Logic

Propositional Logic - Semantics

Important relation between satisfiability, validity, and contradiction
▶ we can verify ifφ is valid if we are able to conclude that¬φ is a contradiction.

28 / 42

Set Theory Propositional Logic

Propositional Logic - Normal Forms

Literal
A literal is a variable b ∈ B or its negation, i.e.,¬b.

Negative Normal Form (NNF)
These are LP formulae where the connective ”¬” is applied only onto literals.

Example
For instance, the formula

(¬b1 ∧ ¬b2) ∨ b1

is in NNF. However, the formula
¬((b1 ∨ b2) ∧ b1)

is not, although they are equivalent formulae (lets check that?).

29 / 42

Set Theory Propositional Logic

Propositional Logic - Normal Forms

Disjunctive Normal Form (DNF)
These are the formulas of LP que satisfy the following syntactic pattern:

(φ11 ∧ . . . ∧ φ1k1) ∨ . . . ∨ (φn1 ∧ . . . ∧ φnkn)

where eachφij is a literal.

DNF and satisfiability
A DNF formula is satisfiable if, and only if one of its inner conjunctions is satisfiable.

30 / 42

Set Theory Propositional Logic

Propositional Logic - Normal Forms
Conversion to DNF
In general, the following approach allows us to pick up a formula of LP and transform it into a DNF form: (i) produce and
equivalent form containing only the connectives∧,∨, and¬; (ii) transform the formula into a NNF; and (iii) apply
distributivity:

(φ ∨ ψ) ∧ θ = (φ ∧ θ) ∨ (ψ ∧ θ)
φ ∧ (ψ ∨ θ) = (φ ∧ ψ) ∨ (φ ∧ θ)

φ ψ θ (φ ∨ ψ) (φ ∨ ψ) ∧ θ (φ ∧ θ) (ψ ∧ θ) (φ ∧ θ) ∨ (ψ ∧ θ)
ff ff ff ff ff ff ff ff
ff ff tt ff ff ff ff ff
ff tt ff tt ff ff ff ff
ff tt tt tt tt ff tt tt
tt tt tt tt tt tt tt tt
tt ff ff tt ff ff ff ff
tt ff tt tt tt ff tt tt
tt tt ff tt ff ff ff ff

31 / 42

Set Theory Propositional Logic

Propositional Logic - Normal Forms

Conjunctive Normal Form (CNF)
These are LP formulae that satisfy the following syntactic pattern:

(φ11 ∨ . . . φ1k1) ∧ . . . ∧ (φn1 ∨ . . . φnkn)

where eachφij is a literal.

CNF e validity
A disjunction of literais

φ11 ∨ . . . φ1n

is valid if, and only if li e¬li are part of the same disjunction of literals. To verify if a CNF formula
is valid, it is enough to check all its disjunctions are themselves valid.

32 / 42

Set Theory Propositional Logic

Propositional Logic - Normal Forms
Conversion to CNF
In general, we should follow a similar approach as the one for DNF, but using distribution equivalences for conjunction,
that is:

(φ ∧ ψ) ∨ θ = (φ ∨ θ) ∧ (ψ ∨ θ)
φ ∨ (ψ ∧ θ) = (φ ∨ ψ) ∧ (φ ∨ θ)

CNF and satisfiability - worst case
The satisfiability problem can be solved via the generation of the corresponding truth table. In the worst case, if the
formula has n propositional variables, then the algorithmic complexity will be 2n.

CNF and satisfiability - alternatives
In general, there are alternative algorithms that mitigate this exponential growth. Such algorithms are particularly
efficient if a formula is in CNF form.
We will dive into one of those algorithms in the next class... the David-Puttman algorithm.

33 / 42

Set Theory Propositional Logic

Natural Deduction

We will now start looking at ”strange things” like the one presented below...

1 A

2 B assumption

3 A repetition (1)

4 B → A →-introduction (2-3)

5 A → (B → A) →-introduction (1-4)

This, and similar representations are called ”deductions” or ”truth derivations”, or ”proofs” (in
this case, written in Fitch notation).

34 / 42

Set Theory Propositional Logic

Natural Deduction

What is natural deduction
It is a finite sequence of steps, where each step amounts at the application of a deduction rule
over formulas that are already in the ”context”. Some of these hypothesis can be inserted as
assumptions in the proof context, although they are eliminated at some point during the proof
construction process.

Introduction and elimination rules
Each connective has associated both introduction and elimination rules:
▶ introduction rules: introduce a new formula, through a construction oriented to a certain

connective, and based on formulae already in the proof context (or making an
assumption)

▶ elimination rules: eliminate a formula and generates either new or sub-formulas from
existing ones, based on the target connective of the formula that we are eliminating

35 / 42

Set Theory Propositional Logic

Natural Deduction Rules - Conjunction
∧ introduction
We can construct a new conjunctionφ ∧ ψ if we know that bothφ andψ are valid in the proof
context

φ ψ
∧-intro

φ ∧ ψ

Elimination rules
If we know already thatφ ∧ ψ holds, then we can ”eliminate” one of formulas.

φ ∧ ψ
∧-elimLφ

φ ∧ ψ
∧-elimR

ψ
36 / 42

Set Theory Propositional Logic

Natural Deduction Rules - Disjunction
Introduction of disjunction
We can construct a new conjunctionφ ∨ ψ if we know that eitherφ orψ hold.

φ
∨-introL

φ ∨ ψ
ψ

∨-introR
φ ∨ ψ

Elimination rules
The elimination, in this case, assumes the form of introducing a new formula θ in case we can
derive θ from bothφ andψ, and we know thatφ ∨ ψ holds.

φ ∨ ψ

[φ]

...
θ

[ψ]

...
θ

∨-elim
θ

37 / 42

Set Theory Propositional Logic

Natural Deduction Rules - Negation
Introduction of negation
If fromφwe can derive false, then we can conclude thatφ does not hold.

[φ]

...
ff ¬-intro¬φ

Elimination of negation
From false, we can conclude whatever we want.

ff ¬-elimφ

38 / 42

Set Theory Propositional Logic

Natural Deduction Rules - Implication
Introduction of implication
If we assumeφ and we can deriveψ from it, then we can conclude thatφ→ ψ.

[φ]

...
ψ

→-intro
φ→ ψ

Elimination of implementation
From false, we can conclude whatever we want.

φ→ ψ φ
→-elim

ψ

39 / 42

Set Theory Propositional Logic

Natural Deduction Rules - Structural Rule

The rule of repetition
This is a structural rule, it does not allow to conclude anything new besides repeating a formula
that exists already in the context.

φ
Rφ

40 / 42

Set Theory Propositional Logic

Some derived rules

φ→ ψ ¬ψ
MT¬φ

φ
¬¬-intro¬¬φ

[¬φ]
...

ff RAφ

ETφ ∨ ¬φ

41 / 42

Set Theory Propositional Logic

The End

42 / 42

	Set Theory
	Propositional Logic

