
11. More on Requirements: The EARS approach and the
Doorstop tool

David Pereira José Proença Eduardo Tovar
RAMDE 2021/2022
Requirements and Model-driven Engineering

CISTER – ISEP
Porto, Portugal

https://cister-labs.github.io/ramde2122

https://cister-labs.github.io/ramde2122


The EARS Approach to
Requirements Specification



Getting to Know EARS

What is EARS?

• The acronym EARS stands for "Easy Approach to Requirements Syntax"
• EARS is a mechanism to gently constrain textual requirements
• EARS patterns provide structured guidance that enable authors to write high quality

textual requirements.

2/51



EARS Building Blocks

Building Blocks
• There is a set syntax (structure), with an underlying set of rules.
• A small number of keywords are used to denote the different patterns of an EARS

requirement.
• The clauses are always in the same order, following temporal logic.
• The syntax and the keywords closely match common usage of English and are

therefore intuitive.

3/51



How EARS Came to Life

Context
• When: while the author and colleagues at Rolls-Royce PLC were analysing the

airworthiness regulations for an engine jet control system.
• "Inputs":The regulations contained high level objectives, a mixture of implicit

and explicit requirements at different levels, lists, guidelines and supporting
information.

• How?:
• In the process of extracting and simplifying the requirements, Mav noticed that the

requirements all followed a similar structure.
• He found that requirements were easiest to read when the clauses always appeared

in the same order. These patterns were refined and evolved to create EARS.

• Inception: The notation was first published in 2009 and has been adopted by
many organisations across the world. 4/51



Motivations for Adopting EARS (1/2)

Why adopt EARS?
• System requirements are usually written in unconstrained natural language, which

being to the table its inherent imprecision and ambiguity.
• It is not unusual that authors of requirements have no training on how to write

requirements.
• During system development, requirements problems propagate to lower levels.

This creates unnecessary volatility and risk, impacting schedules and costs.

5/51



Motivations for Adopting EARS (2/2)

Why adopt EARS?
• EARS reduces or even eliminates common problems found in natural language

requirements.
• It is especially effective for requirements authors who must write requirements in

English, but whose first language is not English.
• EARS has proved popular with practitioners because it is lightweight, there is little

training overhead, no specialist tool is necessary, and the resultant requirements
are easy to read.

In the words of the author, "(...) because the EARS method imposes just a slight
constraint on natural language while providing a simple, logical method for
constructing clear, concise, unambiguous requirements."

6/51



On the adoption of EARS

Who is using EARS?
• the EARS methodology was first presented to the 17th IEEE International

Requirements Engineering Conference in 2009
• since then, it has been adopted by numerous organizations (Bosch, Honeywell,

Intel, Rolls-Royce and Siemens) and included in the requirements engineering
curricula of many universities (China, France, Sweden, UK, USA, and now
Portugal ,).

7/51



The EARS Patterns



EARS Patterns - Overview

Vocabulary

<system> the system name (only 1 per requirement)

<response> the system response (1 or more per requirement)

<pre> a precondition, i.e., a set of properties from a state that need to be true for the
requirement to be active (zero or many per requirement)

<trigger> the trigger that activates a requirement (zero or one per requirement)

<feature> a feature of the system (zero or one)

Specific keywords
while, when, where, if, then, the, shall... we will see in a moment when and
where they are used.

8/51



EARS cheat sheet

Ubiquitous
the <system> shall <response>

State Driven
while <pre(s)> the <system> shall <action>

Event Driven
when <trigger> the <system> shall <response>

Unwanted Behaviour
if <trigger> then the <system> shall <response>

Optional Feature
where <feature> the <system> shall <response>

9/51



The EARS Patterns - Ubiquitous Requirements

Ubiquitous requirements
These refer to requirements that must be always active during system operation.

the <system> shall <response>

Moreover:

• typically state fundamental aspects of the system
• No EARS specific keyword is present when specifying this particular type of

requirement.
• Which makes sense! These requirements do not depends on pre-condition(s) or

triggers to become active. They must remain active all the time.

10/51



Ubiquitous Requirements Examples

Example
• the distances computed between two sets of coordinates shall account for

curvature of the earth
• the compiler shall transform source code into semantically equivalent binary code
• the surveillance UAV shall fly only inside of the designated flight zone
• the software package shall contain an installer
• the software shall be written in programming language X

11/51



THE EARS Patterns - State Driven Requirements

State driven requirements
These are requirements that are active as long as the specified state, hereby
represented by a pre-condition, remains true. These requirements start with the
keyword while.

Syntactic pattern

while <pre(s)> the <system> shall <response>

12/51



Examples of State Driven Requirements

Example
• while there is no card in the ATM the ATM shall display "insert card to begin".
• while in maintenance mode the kitchen system shall reject all input.
• while in Low Power Mode the software shall keep the display brightness at the

Minimum Level
• while the heater is on the software shall close the water intake valve
• while the autopilot is engaged the software shall display a visual indication to the

pilot

13/51



THE EARS Patterns - Event Driven Requirements

Event driven requirements
Event driven requirements are initiated when and only when a trigger occurs or is
detected. They are denoted by the keyword when.

Syntactic pattern

when <trigger> the <system> shall <response>

Simple translation exercise
Original req: In the event of a fire, the security system shall Unlock the fire escape

doors
In EARS: when a fire is detected the security system shall unlock the fire escape

doors

14/51



THE EARS Patterns - Event Driven Requirements

Event driven requirements
Event driven requirements are initiated when and only when a trigger occurs or is
detected. They are denoted by the keyword when.

Syntactic pattern

when <trigger> the <system> shall <response>

Simple translation exercise

Original req: In the event of a fire, the security system shall Unlock the fire escape
doors

In EARS: when a fire is detected the security system shall unlock the fire escape
doors

14/51



THE EARS Patterns - Event Driven Requirements

Event driven requirements
Event driven requirements are initiated when and only when a trigger occurs or is
detected. They are denoted by the keyword when.

Syntactic pattern

when <trigger> the <system> shall <response>

Simple translation exercise
Original req: In the event of a fire, the security system shall Unlock the fire escape

doors

In EARS: when a fire is detected the security system shall unlock the fire escape
doors

14/51



THE EARS Patterns - Event Driven Requirements

Event driven requirements
Event driven requirements are initiated when and only when a trigger occurs or is
detected. They are denoted by the keyword when.

Syntactic pattern

when <trigger> the <system> shall <response>

Simple translation exercise
Original req: In the event of a fire, the security system shall Unlock the fire escape

doors
In EARS: when a fire is detected the security system shall unlock the fire escape

doors
14/51



Examples of Event Driven Requirements

Example
• when mute is selected the laptop shall suppress all audio output.
• when potato is inserted into the input hatch the kitchen system shall peel the

potato.
• when continuous ignition is commanded by the aircraft the control system shall

switch on continuous ignition
• when an unregistered device is plugged into a USB port the OS shall tries to

locate and load the driver for the device.
• when the water level falls below the Low Water Threshold the software shall

open the water valve to fill the tank to the High Water Threshold

15/51



THE EARS Patterns - Optional feature requirements

Optional feature requirements
Optional feature requirements apply in products or systems that include the specified
feature and are denoted by the keyword Where.

Syntactic pattern

where <feature> the <system> shall <response>

16/51



THE EARS Patterns - Optional feature requirements

Example
• where the car has a sunroof the car shall have a sunroof control panel on the

driver door.
• where the kitchen system has a food freshness sensor the kitchen system shall

detect rotten foodstuffs.
• where a thesaurus is part of the software package the installer shall prompt the

user before installing the thesaurus
• where hardware encryption is installed the software shall encrypt data using the

hardware instead of using a software algorithm
• where a HDMI port is present the software shall allow the user to select HD

content for viewing

17/51



THE EARS Patterns - Unwanted behaviour requirements

Unwanted behaviour requirements
These are used to specify the required system response to undesired situations and
are denoted by the keywords if and then.

Syntactic pattern

if <trigger> then the <system> shall <response>

A note on "trigger"
As in the case of event requirements, for unwanted behaviours one needs to identify
the trigger/event. It is on you, the requirement specification responsible to
understand if it refers to something wanted or unwanted. EARS just ensures a
syntactic distinction, i.e., using when or if depending on the concrete case.

18/51



THE EARS Patterns - Unwanted behaviour requirements

Example
• if an invalid credit card number is entered then the website shall display "please

re-enter credit card details"
• if a spoon is inserted to the input hatch then the kitchen system shall eject the

spoon
• if the memory checksum is invalid then the software shall display an error

message
• if the ATM card inserted is reported lost or stolen then the software shall

confiscate the card
• if the measured and calculated speeds vary by more than 10% then the software

shall use the measured speed

19/51



EARS Patterns - Complex Requirement Pattern

Syntax of a complex EARS requirement
Is the more general pattern of requirement that exists in EARS. It uses a combination
of EARS keywords to allow for such complexity.

Syntactic pattern

<multiple conditions> the <system> shall <response>

such that multiple conditions is a combination of:

• a pre-condition, using the while keyword
• a trigger, using the when keyword
• an unwanted condition, using the if keyword
• a specific feature, using the where keyword 20/51



THE EARS Patterns - Example of Complex Requirements

Example
• while the aircraft is on ground when reverse thrust is commanded the engine

control system shall enable reverse thrust
• while a second optical drive is installed when the user selects to copy disks the

software shall display an option to copy directly from one optical drive to the
other optical

• while in start up mode when the software detects an external flash card the
software shall use the external flash card to store photos

• when the landing gear button is depressed once if the software detects that the
landing gear does not lock into position then the software shall sound an alarm

21/51



Rewriting Requirements Using
EARS



Examples on how to use EARS for rewriting requirements

Original Requirement
The installer software shall be available in Portuguese.

Type of Requirement
Ubiquitous

Requirement using EARS
the installer software shall be available in Portuguese

22/51



Examples on how to use EARS for rewriting requirements

Original Requirement
The software shall display a count of the number of participants.

Type of Requirement
Event Driven

Requirement using EARS
when the user selects the caller count from the menu the software shall display a
count of the number of participants in the audio call in the user interface

23/51



Examples on how to use EARS for rewriting requirements

Original Requirement
The software shall phone the Alarm Company.

Type of Requirement
Unwanted Behavior

Requirement using EARS
if the alarm software detects that a sensor has malfunctioned then the alarm
software shall phone the Alarm Company to report the malfunction

24/51



Examples on how to use EARS for rewriting requirements

Original Requirement
The software shall mute the microphone.

Type of Requirement
State Driven

Requirement using EARS
while the mute button is depressed the software shall mute the microphone

25/51



Examples on how to use EARS for rewriting requirements

Original Requirement
The software shall download the book without charge

Type of Requirement
Optional Feature Requirement

Requirement using EARS
where the book is available in digital format the software shall allow the user to
download the book without charge for a trial period of n days

26/51



Examples on how to use EARS for rewriting requirements

Original Requirement
The software shall warn the user of low battery

Type of Requirement
Complex Requirement

Requirement using EARS
while on battery power if the battery charge falls below 10% remaining then the
system shall shall display a warning message to switch to AC power

27/51



Exercises

Ex. 11.1: Rewrite using EARS patterns
1. The user can have tea after having 2 consecutive coffees.
2. It is possible to do a after 3 b’s, but not more than 1 a.
3. It must be possible to do a after [doing a and then b].
4. If a taxi is allocated to a service, it must first collect the passenger and then plan

the route.
5. On detecting an emergency the taxi becomes inactive.
6. The user can only have coffee after the coffee button is pressed.
7. The used must have coffee after the coffee button is pressed.
8. It is always possible to turn off the coffee machine.
9. It is always possible to reach a state where the coffee machine can be turned off.

10. It is never possible to add chocolate right after pressing the latte button. 28/51



Solutions to the proposed exercises

Requirement 1
The user can have tea after having 2 consecutive coffees

Type
Event Driven

Rewritten in EARS
when the user takes two consecutive coffees the machine shall be able to serve tea
to the user

29/51



Solutions to the proposed exercises

Requirement 2
It is possible to do a after 3 b’s, but not more than 1 a

Type
Two event driven requirements

Rewritten in EARS
This requirement must be split in two before being written using EARS patterns:

• when three b’s are done the system shall allow the user to do one a
• when three b’s and one a were done the system shall not allow the user to do

another a

30/51



Solutions to the proposed exercises

Requirement 3
It must be possible to do a after [doing a and then b].

Type
Event Driven

Rewritten in EARS
when a was done followed by a b the system shall allow the user to do a

31/51



Solutions to the proposed exercises

Requirement 4
If a taxi is allocated to a service, it must first collect the passenger and then plan the
route.

Type
Two requirements: one Event Driven and one Complex

Rewritten in EARS
• when allocated to a service the taxi shall collect the associated passenger
• while allocated to a service, when it has collected the passenger the taxi shall

plan the route

32/51



Solutions to the proposed exercises

Requirement 5
On detecting an emergency the taxi becomes inactive.

Type
Event Driven

Rewritten in EARS
when an emergency is detected the taxi shall become inactive

33/51



Solutions to the proposed exercises

Requirement 6
The user can only have coffee after the coffee button is pressed.

Type
Event Driven

Rewritten in EARS
when the coffee button is depressed the coffee machine shall be able to serve coffee

34/51



Solutions to the proposed exercises

Requirement 7
The user must have coffee after the coffee button is pressed.

Type
Two event driven requirements

Rewritten in EARS
• when the coffee button is depressed the coffee machine shall serve a coffee
• when a coffee is served the user shall drink that coffee

35/51



Solutions to the proposed exercises

Requirement 8
It is always possible to turn off the coffee machine.

Type
Ubiquitous

Rewritten in EARS
the coffee machine shall have a mechanism to shutdown at any time during operation

36/51



Solutions to the proposed exercises

Requirement 9
It is always possible to reach a state where the coffee machine can be turned off.

Type
Ubiquitous

Rewritten in EARS
the coffee machine shall always be able to reach a state where it is possible to safely
shutdown

37/51



Solutions to the proposed exercises

Requirement 10
It is never possible to add chocolate right after pressing the latte button

Type
Complex: state driven + unwanted behavior

Rewritten in EARS
while the machine is preparing a latte if chocolate button is pressed then the
machine shall not add chocolate to the latte

38/51



Applying and Troublshooting EARS



How to apply EARS

• Identify whether you are working with a requirement, or something else (e.g.,
note, example, remark, etc)

• Identify compound requirements, i.e., whether the requirement needs to be
split/decomposed

• Identify the acting system, person, or process
• Analise the needed sentence type(s)
• Identigy possible missing requirements
• Analyse the translated requirements for ambiguity, conflict, and repetition
• Review requirements if possible
• Interate as required

39/51



What are the issues that can occur when using EARS?

• No sentence type fits: are you actually trying to translate a requirement?
• Can’t identify the actor: either use higher abstraction level until it makes sense, or

get more information from the relevant stakeholder
• There is no system response: typically the case with non-functional requirements;

it can be expressed as "the system shall be ..."
• There is no template for "shall not": try using "shall be immune" or similar or, as

last resort, use the "shall not" pattern

40/51



The Doorstop Tool



What is Doorstop?

In a Nutshell
• its is both a Python tool and API that allows to write requirements in a text

based manner and that uses version control.
• This solution allows a project to utilize its existing development tools to manage

versions of the requirements using a lightweight, developer-friendly interface.

Doorstop was created to enable the utilization of existing version control
systems and usage of tools developers are already familiar with (namely, the
command line and text editors).

41/51



What is Doorstop?

How it works (high-level description)
• When a project leverages this tool, each linkable item (requirement, test case,

etc.) is stored as a YAML file in a designated directory.
• The items in each directory form a document.
• The relationship between documents forms a tree hierarchy.
• Doorstop provides mechanisms for modifying this tree, validating item traceability,

and publishing documents in several formats.

42/51



Where to download and install

Requirements
• Python 3.5+
• version control system

Installing
• pip install doorstop

Running from Docker
• access https://github.com/doorstop-dev/docker-doorstop and follow the

instructions on how run the Docker container

Documentation
https://doorstop.readthedocs.io

43/51

https://github.com/doorstop-dev/docker-doorstop
https://doorstop.readthedocs.io


Doorstop - creating documents

Parent Document

$ doorstop create REQ ./reqs

created document: REQ (@/reqs)

Child Document

$ doorstop create TST ./reqs/tests --parent REQ

created document: TST (@/reqs/tests)

44/51



Doorstop - adding and editing documents

Adding items/requirements

$ doorstop add REQ

added item: REQ001 (@/reqs/REQ001.yml)

Editing items/requirements

$ doorstop edit REQ1

opened item: REQ001 (@/reqs/REQ001.yml)

45/51



Doorstop - linking items

Example

$ doorstop create REQ ./reqs

created document: REQ (@/reqs)

$ doorstop add REQ

added item: REQ001 (@/reqs/REQ001.yml)

$ doorstop create TST ./reqs/tests --parent REQ

created document: TST (@/reqs/tests)

$ doorstop add TST

added item: TST001 (@/reqs/tests/TST001.yml)

$ doorstop link TST1 REQ1

linked item: TST001 (@/reqs/tests/TST001.yml) -> REQ001 (@/reqs/REQ001.yml)

46/51



Doorstop - validating and publishing

Validation

$ doorstop

Publishing as text

$ doorstop publish TST

Publishing as HTML

$ doorstop publish all ./dist/

47/51



Doorstop - creating documents

Lets go online now...
We will now replicate the commands presented in the CLI to see how doorstop
behaves...

48/51



Some exercises for training with
EARS



Training with EARS

The problem
A farmer wants to transport a fox, a goose, and some beans across a river (from the
left margin to the right margin). Unfortunately, he can only carry one at a time.
Furthermore, if the farmer is not present, the fox will eat the goose and the goose
will eat the beans.

Ex. 11.2: Identify requirements
The goal of this exercise is for you to identify the requirements for this problem, and

classify and write them using the EARS patterns. If necessary, elicit other
requirements that are not in the text but that should be present.

49/51



More warm up exercises with EARS

Ex. 11.3: Another scenario that you’ve seen in the classes
Lets consider a vending machine with 2 products, apples and bananas, costing

1e and 2e respectively. Its users have only 1e and 2e coins to interact with the
machine. Now, write using EARS patterns the following requirements:

• The user must be able to get apples and bananas;
• The machine accepts up to 3e, and not more than that;
• The machine must give change back when applicable;
• The machine can be powered off and powered on;

50/51



Now, a more complex scenario

The problem
I would like the vending machine to sell 3 items: apples, bananas, and chocolates. It
should be possible to buy chocolates for 2e and fruit for 1e . Only 1e and
2e coins are accepted. The machine has a maximum capacity for 1e coins and for
2e coins. The machine does not accept coins if its capacity is full. The machine
should give change back when buying fruit after inserting 2e. If the machine has
already 2e inserted, it refuses another coin. If the machine has no 1e coins, it
cannot not sell fruit with a 2e coin. The user can request the money back after
inserting coins.

Ex. 11.4: Identify requirements
Proceed with identifying requirements, classifying and writing them following the

EARS patterns, and use the doorstop tool to produce the corresponding requirement
specification requirements. 51/51


	The EARS Approach to Requirements Specification
	The EARS Patterns
	Rewriting Requirements Using EARS
	Applying and Troublshooting EARS
	The Doorstop Tool
	Some exercises for training with EARS

