swshs gonnd

i jjesd

Y, “aR: -’
Eo‘w).ﬂucuc &) pasay -
u\)8
— St

Formal
[J

ucing

A

£
o
S
et
(=
[
(&}
=
($)
S
©
[}
(7))
()
o
|
[+ 4
L]
=
a
Q

0
=
(]
4=
n
>
(72}
o0
=
-
>
o
€
]
(&)
©
(]
©
©
]
o
€
11}
o3
]
£
s
©
]
o

What we will be looking at now

> Why do we need Formal Methods in Requirements Engineering

> What do Formal Methods have to offer

“Itis clear to all the best minds in the field that a more
mathematical approach is needed for software to
progress much.”

Bertand Meyer, author of the concept of "Design by Contract”

/}7 CISTER - Research Centre in
« Computing Systems

swashs gunnd!

-
Jam auni-esy A\”\\

wod PARE— sasoy - ¥ALSID

Wl AT M

> Al

ey s, TN

v

4

=
o
=
)
(=
[
(&)
=
($)
=
©
[}
(7))
()
o

|
[« 4
]
=
a
o

0
=
(]
4=
n
>
(72}
o0
=
-
>
o
€
]
(&)
©
(]
©
©
]
o
€
11}
o3
]
£
s
©
]
o

What are Formal Methods?

> General view:
> application of mathematics to software engineering

> concerned with specifying, modelling, and analysing the system using
and underlying, precise, mathematically based notation

> More narrow view:
> use formal languages

> engage on formal reasoning about formulae of the language

/')(_ CISTER - Research Centre in RAMDE 2021/2022 28 de outubro de 2021
« Real-Time & Embedded Computing Systems

Formal Methods and Requirements

> How do Formal Methods relate to requirements engineering?

> Essentially, through formal notation:

> Formal set of rules that define the syntax and semantics of the language

> The rules that determine if the formulae are well-formed and to prove
properties about those formulae

//j CISTER - Research Centre in
®—/ Real-Time & Embedded Computing Systems

Highlight Example

> First Order Logic (also known as Predicate Logic)
> primitives for expressions: variables, constants, functions, predicates
> logical connectives: and (A), or (V), implies (=), equality (=), negation (—)
> quantifiers: for all (), exists (3)
> deduction rules: we will look into this in the next lessons

> Examples of expression/formulae:
Y >VYN(y>2z) > x>z
YVx,Vy,Vz,(x > y)AN(y>z) > x> 2z
> Vx,Vy,Vz,| Node(x,y,z) — Leaf(x) — Leaf(z)]| > x<yAz =y
> Vh,VI, List(l) — List(h :: 1)
> Vp,Vs,Parent(p,s) — —Parent(s,p)

//j CISTER - Research Centre in
®—/ Real-Time & Embedded Computing Systems

. |
~Bung MoN |

5.

Real-Time & Embedded Computing Systems

CISTER - Research Centre in

1 grenueis

@
M
\
DA e o
1“ [:Jxmo::immm \“
agandwiod PRPRALTIS T 110
cusashs BUW U\ 12WRT - 29598
pr————
lﬂ|1

//E \

UL TR

What does correctness mean?

> Let us consider the following representation

Application Domain S - Specification

D - Domain Properties C - Computer

Machine Domain

R - Requirements P - Program

> Some important information:
> Domain properties are characteristics of the application domain
> Requirements are conditions/features that to be made true by the system

> Specification is a description of the behaviours the system must have in order
to satisfy the requirements

/.2_) CISTER - Research Centre in RAMDE 2021/2022 28 de outubrode 2021

Real-Time & Embedded Computing Systems

What does correctness mean?

> Correctness criteria:
> the program running on a given computer satisfies the specification

> the specification, in the context of the domain properties, satisfies the
requirements

> Completeness criteria:
> We discovered all the important requirements
> We discovered all the relevant domain properties

//j CISTER - Research Centre in
®—/ Real-Time & Embedded Computing Systems

Understanding the Differences

> Requirement R:
The database shall only be accessible by authorized personnel

> Domain Properties D:
Authorized personnel have passwords
Passwords are never shared with non-authorized personnel
> Specification S:

Access to the database shall only be granted after the user types
and authorized password

D + S implies R

//j CISTER - Research Centre in
®—/ Real-Time & Embedded Computing Systems

When things go wrong

Application Domain S - Specification Machine Domain

D - Domain Properties C - Computer

R-Re

P - Program
S RN T

* notthatrare e veryrare

* bugs, misunderstood specification, poor configuration

* power failure, circuit/chip failure, ...
management, poor control, etc.

e caught by:

* desing analysis, testing, certification through

e caught by:

cpe _4s : usage, ...
« testing, simulation, formal verification against spec
* code inspection and walkthoughs
/')(_ CISTER - Research Centre in RAMDE 2021/2022 28 de outubro de 2021
« Real-Time & Embedded Computing Systems

When things go wrong

Application Domain S - Specification Machine Domain

D - Domain Properties C - Computer

R - Requirements P - Program

e common

e caused by:

* misunderstood requirements

* wrong choice of specification language

* ambiguous, inconsistent/incomplete specification
e caught by:

« inspection, formal verification

* end-to-end testing

/')(_ CISTER - Research Centre in RAMDE 2021/2022 28 de outubro de 2021
« Real-Time & Embedded Computing Systems

When things go wrong

S - Specification

Application Domain Machine Domain

D - Domain Properties C - Computer

R - Requirements P - Program

* very common

» caused by:
* lack of domain expertiese
* unquestioned assumptions
* insufficient domain analysis
« caught by:
« failure analysis
* talking to the right experts

common

caused by:
* insufficent/bad coomunication with stakeholders
* lack of analysis
« failure to handle change

caught by:
* inspections, customer reviews
* modelling, formal verification, prototyping

//j CISTER - Research Centre in
®—/ Real-Time & Embedded Computing Systems

Where do Formal Methods Apply

> Formalize the specification:
> as a precise baseline to verify the program against
> as amodel of program behavior to compare against requirements

> Formalize the domain knowledge:
> reason about whether it is complete
> reason about how it affects the proposed system

> Formalize the requirements:
> animate them
> test logical coherence
> check for completeness against an underlying mathematical model

//j CISTER - Research Centre in
®—/ Real-Time & Embedded Computing Systems

Why formalise in Requirements Eng?

> Toremove ambiguity and improve precision

> Provides a basis for verification:
> That a program meets its specification
> That athat specification captures the requirements adequately

> Allows us to reason about the requirements
> Properties of formal requirements models can be checked automatically
> Can test for consistency, explore the consequences, etc.

> Allows us to animate/execute the requirements

> Will have to formalize eventually anyway
> bridging from the informal world to a formal machine domain

//j CISTER - Research Centre in
®—/ Real-Time & Embedded Computing Systems

Why is not usually done?

> Tend to exhibit lower level than other techniques

> inclusion of a lot of detail and the system boundaries already well
established

> Tend to concentrate on consistent, correct models

> Confusion about which tools are appropriate

> advocates generally too tied to a certain tool, and scalability is still not
possible with many tools/prototypes

> Require more effort
> mostly due to the necessary mathematical training and experience

> Are not appropriate in many projects...

//j CISTER - Research Centre in
®—/ Real-Time & Embedded Computing Systems

qunshS M::&E

wioD PP 3 g WL

A
o -

\ead

12959y ualso

A

1

ow it relates 0

N

LT

g

=
()
S
ol
[=
<))
(&)
<
(&)
S
©
O
()]
()
o
|
[4
]
=
é
Q

pd

)
=
o)
e
7
>
o
0
=
=
5
a
S
o)
(&)
S
o
S
=
o}
o
€
L
o3
o
£
s
©
o
o

So, too many models involved?

Model
of D

Environment

Model is satisfied by

Requirements

Model
of S

Software Behaviour

/'7{_ CISTER - Research Centre in RAMDE 2021/2022 28 de outubro de 2021
« Real-Time & Embedded Computing Systems

Modelling can help!

> Can guide elicitation:
> understanding what questions to make, identify hidden requirements

> Can provide a measure of progress:
> understand if completeness of the model implies finished elicitation

> Uncover problems:

> inconsistency of the model revealing other interesting aspects of the
system (e.g., infeasible requirements, terminology confusion, disagreement
between stakeholders)

> Check our own understanding:
> model has the right properties, or reason about its consequences

//j CISTER - Research Centre in
®—/ Real-Time & Embedded Computing Systems

Types of Model

> Informal, written in natural language
> extremely expressive and flexible, poor at capturing the semantics of
the model, good for elicitation and to annotate models for
communication
> Semi-formal
> captures structure and some semantics
> allow for some reasoning, consistency checking, etc.

> Formal
> very precise semantics, possible to conduct reasoning

/')(_ CISTER - Research Centre in RAMDE 2021/2022 28 de outubro de 2021
« Real-Time & Embedded Computing Systems

Good Properties of Modelling Languages

> Indepent of Implementation
> does not consider internal representation, abstracts data types

> Abstraction capabilities
> extracts the essential aspects of the system, allowing to have a “big pic”

> Formality
> precise syntax and rich semantics

> Constructability/Composability

> can compose/decompose pieces of the model to handle complexity and
size

//j CISTER - Research Centre in
®—/ Real-Time & Embedded Computing Systems

Good Properties of Modelling Languages

> Ease of analysis
> ability to analyze for ambiguity, incompleteness, inconsistency

> Traceability

> ability to cross-reference elements, ability to link to design, etc.

> Executability
> can animate the model, to compare it to reality
> Minimality

> no redundancy of concepts, no extraneous choices of how to represent
concepts

/')(_ CISTER - Research Centre in RAMDE 2021/2022 28 de outubro de 2021
« Real-Time & Embedded Computing Systems

Model Validation

> Consistency Analysis and Typechecking

> well-formedness first that most of other methods and represent real-
world integrity

> Validation

> animation of small models

> formal queries about implications of know properties, particular
requirements, or changes

> system properties

> Verifying design refinement
> does the design meets the requirements

//j CISTER - Research Centre in
®—/ Real-Time & Embedded Computing Systems

Some differences between Formal Methods

Formal methods differ considerably on their nature, notably in
what concerns the following aspects.

> Ontology

> fixed vs extensible

> Mathematical foundations
> logic vs algebraic languages vs set theory vs state machines

> Treatment of time
> discrete sequences of events vs continuous time vs quantified intervals

/')(_ CISTER - Research Centre in RAMDE 2021/2022 28 de outubro de 2021
« Real-Time & Embedded Computing Systems

Some Traditions/Schools

> Formal Specification Languages

> inception on program verification, suitable for specifying the behaviour
of program units

> key technologies being type checking, theorem proving

> Reactive System Modelling

> capture dynamic models of system behaviour, with focus on reactive
systems (e.g., safety and liveness in real-time embedded systems)

> key technologies: model checking, consistency checking

> Formal Conceptual Modeling
> focus on modelling domain entities, activities, agents, assertions
> key technologies: formal ontologies, first order logic

/')(_ CISTER - Research Centre in RAMDE 2021/2022 28 de outubro de 2021
« Real-Time & Embedded Computing Systems

Formal Specification Languages

> Three families:

> Operational - specification is executable abstraction of the
implementation

> State-based - views a program as a (large) data structures whose state
can be altered by procedure calls

> Algebraic - views a program as a set of abstract data structures with a set
of operations
> Developed for specifying programs
> Programs are formal, man-made objects

> these languages are typically not very appropriate for Requirements
Engineering (requirements specification # program specification)

//j CISTER - Research Centre in
®—/ Real-Time & Embedded Computing Systems

Reactive Systems Modelling

> Modeling how a system should behave
> model the environment as a state machine
> model the system as a state machine

> model safety, liveness properties of the machine as temporal logic
assertions

> check whether the properties hold of the system interacting with its
environment

> We will look into this during the course, mostly in the 2nd
semester

> class on formal verification of software
> in the current class you will get the basis using algebraic specifications

//j CISTER - Research Centre in
®—/ Real-Time & Embedded Computing Systems

From Notations to Methods

> Notation:
> arepresentation language for expressing things

> Technique:

> prescribes how to perform a particular activity and its productin a
particular notation

> Method:

> definition on how to perform a collection of activities, focusing on
integration of techniques and guidance about their use

/')(_ CISTER - Research Centre in RAMDE 2021/2022 28 de outubro de 2021
« Real-Time & Embedded Computing Systems

Conclusions

> Formal languages and methods are here to help in the very
complex and challenging process of Requirement Engineering

> Requirements valid as a consequence of domain properties and
software properties & behaviour

> Several flavours of formal methods available, which we must
choose wisely

> First Order Logic as highlight method

> we will start looking at it in the next lesson, picking up on the basic
mathematical notations, and proceeding to syntax, semantics, and deductive
rules that support reasoning

/')(_ CISTER - Research Centre in RAMDE 2021/2022 28 de outubro de 2021
« Real-Time & Embedded Computing Systems

28 de outubro de 2021

qead
|3 g aUnL\®
J109 PRPRAAW wmom -9waIso

i Sunnau
uashs o Ul 23R yoies

\

" | W

(2]
=
o)
e
(74
>
(70
0
(=]
S
>
)
£
o
(&)
S
o}
S
S
@
o
=
L
C]
o
£
s
©
o}
o

CISTER - Research Centre.in

.4

