
A2: Analysing behaviour
David Pereira & José Proença & Eduardo Tovar

RAMDE – 2021/2022

To do
Produce a report as a PDF document including the answers to the exercises below. Continue
to work in your git repository – you will need the 3 files produced in your last assignment:
farmer1.mcrl2, farmer2.mcrl2 and farmer3.mcrl.

What to submit
The PDF report and the new files required by the exercises placed in your group’s git repository:
farmer12.mcrl2, vending1.mcrl2 and vending2.mcrl2. Recall that all students should push
commits.

Deadline:
9 Jan 2022 @ 23:59 (Monday) – together with Assignment 3 (to appear)

Verification of the farmer-fox-goose-beans problem
Recall the specifications in the farmer1, farmer2, and farmer3 projects from the modelling exercises
(https://cister-labs.github.io/ramde2122/assignments/a2-modelling.pdf) You will now verify
properties of these systems. In mcrl2ide, a property can be written using Tools>Add Property. There
are 2 types of properties: Equivalence and Mu-Calculus, covered by this assignment.

LTS Equivalence
Exercise 1. Create variations of the Sys processes in farmer1 and farmer2 and compare them to the
originals as follows.

1.1. Create a new process SysHide in both farmer1 and farmer2 equal to Sys but hiding all allowed
actions except win (using hide). Show the resulting SysHide processes for each file.

1.2. Combine both specifications of farmer1 and farmer2 in a single specification farmer12. Rename
Sys/SysHide from farmer1 to Sys1/SysHide1, and similarly for Sys/SysHide from farmer2. Redefine the
function ok by setting it to true, i.e., define ok(fm,f,g,b)=true;.

Visualise the processes SysHide1 and SysHide2. Compare them using strong bisimulation by adding
a new Equivalence property that compares them. What can you conclude?

1



Verification of properties
Exercise 2. Answer the questions below on the use of mu-calculus for specifying properties in mCRL2.

2.1. What does the property “[true*]<win>true” mean? Does it hold for farmer1 and for farmer2?

2.2. Does the property “[true*.foxr.win]false” holds for farmer1? Does the equivalent property
“[true*.fox(right).win]false” holds for farmer2? What can you conclude?

2.3. Recall that farmer1 is less complete than farmer2, because it fails to include some important
invariants. Write a single property for farmer2 to capture that:

• no bad state is reached, and

• the goal is reached (everyone can cross).

Add this property to your project and verify it using mCRL2 toolset. Reformulate this property for
farmer1 and add it to that project, and verify if it holds.

2.4. Consider now the extended system farmer3. In this example there is a an extra process called
Counter(n:Nat). Define the following two properties over actions of this counter:

1. It is possible to win after exactly 7 moves.

2. It is not possible to win in less than 7 moves.

Modelling a vending machine
Exercise 3. Specify two interacting processes in mCRL2:

• a vending machine with 2 products, apples and bananas, costing 1e and 2e respectively; and

• a user who can insert 1e or 2e coins and request for products.

Provide two variations of this system and include them in files vending1.mcrl2 and vending2.mcrl2,
respectively, according to the requirements below. Try to keep the specifications simple. Submit this
file in your git repository.

3.1. Specify in vending1.mcrl2 a system such that the properties below hold.
[true*.pay2eur.pay2eur] false
[true*.pay2eur.pay1eur] false
[true*.pay2eur]<(!pay1eur && !pay2eur)*.getApple> true
<true*.pay2eur.true*.getBanana> true

Show your specification and show a screenshot of its LTS.

3.2. Specify another system in vending2.mcrl2 such that the properties below hold.
<true*.pay2eur.pay2eur> true
<true*.getApple> true
<true*>[true*.getApple] false

Show your specification and show a screenshot of its LTS.

2



3.3. Now it is your turn to formalise the requirements. Write a set of requirements using mCRL2’s
formulas that capture the informal requirements stated below. Do not implement the mCRL2 model. If
necessary, include an explanation of the actions and assumptions that you used.

I would like the vending machine to sell 3 items: apples, bananas, and chocolates. It should
be possible to buy chocolates for 2e and fruit for 1e. Only 1e and 2e coins are accepted.
The machine has a maximum capacity for 1e coins and for 2e coins. The machine does
not accept coins if its capacity is full. The machine should give change back when buying
fruit after inserting 2e. If the machine has already 2e inserted, it refuses another coin. If
the machine has no 1e coins, it cannot not sell fruit with a 2e coin. The user can request
the money back after inserting coins.

Self-peer-evaluation
Exercise 4. In a scale from 0-5, where 5 is better than 0, give a mark to you and each of your team
groups for each of the following criteria:

• Effort (time spent)

• Quality (of the work produced)

• Collaboration (how easy it was to meet and interact)

Send this information individually as before by email or Teams to David Pereira and José Proença.
No justification is needed – e.g., “Group 3: João: Effort 5, Quality 4, Collaboration 5; Maria: ...”.

3


