
A1: Modelling behaviour
David Pereira & José Proença & Eduardo Tovar

RAMDE – 2021/2022

To do
Produce a report as a PDF document including the answers to the exercises below. Read, modify,
and produce mCRL2 specifications, following the instructions in the exercises.
Auxiliary files in https://cister-labs.github.io/ramde2122/assignments/farmer.zip

What to submit
The PDF report and the 3 files requested in the exercises: farmer1.mcrl2, farmer2.mcrl2 and
farmer3.mcrl.

How to submit using git
1. Create a private git repository in your favouring host (e.g., github or bitbucket).
2. Name it RAMDE21-g<group number>.

3. Add pro@isep.ipp.pt as a member to the group (read-permissions are enough).
4. Include all the files to be submitted in the repository.

Note that all students should push commits.

Deadline
12 Dec 2021 @ 23:59 (Sunday)

Modelling the farmer-fox-goose-beans problem
A farmer wants to transport a fox, a goose, and some beans across a river (from the left margin to
the right margin). Unfortunately, he can only carry one at a time. Furthermore, if the farmer is not
present, the fox will eat the goose and the goose will eat the beans. The problem is solved if the farmer
can carry all animals across the river.

%% file: famer1.mcrl2
act

fr,fl,gr,gl,br,bl, % actions by the passengers
ffr,fgr,fbr,farmerr,ffl,fgl,fbl,farmerl, % actions by the farmer

1

foxr,foxl,gooser,goosel,beansr,beansl, % actions by the system
winf,wing,winb,win; % actions to detect winning conditions

proc
Fox = fr.(fl+winf).Fox ;
Goose = gr.(gl+wing).Goose ;
Beans = br.(bl+winb).Beans ;
Farmer = (ffr+fgr+fbr+farmerr).(ffl+fgl+fbl+farmerl).Farmer ;

Sys = allow(
{ foxr,foxl,gooser,goosel,beansr,beansl,farmerl,farmerr,win },

comm(
{ fr|ffr → foxr, fl|ffl → foxl,

gr|fgr → gooser, gl|fgl → goosel,
br|fbr → beansr, bl|fbl → beansl,
winf|wing|winb|farmerl → win

},
Fox ∥ Goose ∥ Beans ∥ Farmer

));

init
Sys;

Exercise 1. We will encode the same problem using mCRL2’s process algebra. Start by downloading
the auxiliary files for this assignment at https://cister-labs.github.io/ramde2122/assignments/

farmer.zip, where you will find the farmer1.mcrl2 file above. This is a simplified (but incomplete)
specification of our farmer-fox-goose-beans problem.

The specification is split into three sections: act, a declaration of 24 actions, proc, the definition of
4 processes, and init, the initialisation of the system.

1.1. Create a new project farmer1 using mcrl2ide, and add the resulting project folder to your git
repository. Produce the labelled transition system (LTS) of this mCRL2 specification and show a
screenshot of the LTS (make sure it is understandable).

1.2. This specification is not complete yet, i.e., it does model the puzzle completely. Explain informally
why this specification is not complete, by explaining what is being modelled and what is still missing.

1.3. If you replace the init block by only Fox ∥ Goose ∥ Beans ∥ Farmer (i.e., without the restric-
tio0ns allow and comm) would you obtain more or less states than with the original specification?
Why?

Exercise 2. We present below a new specification for the same problem consisting of a single process
State that keeps the state information, found in the provided auxiliary file farmer2.mcrl2. This new
specification includes more advanced features of mCRL2, including: a data structure, actions with data
parameters, processes with data parameters, and user defined functions inv and ok.

%% file: farmer2.mcrl2
sort

Position = struct left | right;
map

2

inv : Position → Position ;
ok : Position # Position # Position # Position → Bool ;

var
fm,f,g,b: Position;

eqn
inv(left) = right ;
inv(right) = left ;
ok(fm,f,g,b) = %% (1) %%;

act
fox,goose,beans,farmer : Position; % system actions, parameterised on the position
win; % actions to detect the winning condition

proc
State(fm:Position,f:Position,g:Position,b:Position) = % (farmer,fox,goose,beans)

((fm==f && ok(inv(fm),inv(f),g,b)) → fox(inv(f)) .State(inv(fm),inv(f),g,b))
+ ((fm==g && ok(inv(fm),f,inv(g),b)) → goose(inv(g)) .State(inv(fm),f,inv(g),b))
+ ((fm==b && ok(inv(fm),f,g,inv(b))) → beans(inv(b)) .State(inv(fm),f,g,inv(b)))
+ (ok(inv(fm),f,g,b) → farmer(inv(fm)).State(inv(fm),f,g,b))
+ ((fm==right && f==right && g==right && b==right) → win.State(left,left,left,left));

Sys = State(left,left,left,left);

init
Sys;

2.1. This new specification has a hole in the definition of ok, marked with %% (1) %%. Extend the given
mCRL2 definition by replacing this hole with the code that describes the desired state invariant and
save the resulting specification in a new project named farmer2. Show your new definition of the
function ok.
2.2. Without modifying the process State, adapt the specification by adding a new process Counter(n:Nat)
that runs in parallel with State(left,left,left,left) and counts the number of traversals made by the
boat. Save the resulting specification in a new project farmer3 and show your new specification.
(hint: it could be useful to use a bound for the Counter), i.e., do not allow n to be bigger than a certain
number.)

Modelling a vending machine
Exercise 3. Specify two interacting processes in mCRL2:

• a vending machine with 2 products, apples and bananas, costing 1eur and 2eur respectively; and

• a user who can insert 1eur or 2eur coins and request for products.
Provide a specification of this system and include them in a vending.mcrl2 file, according to the

requirements below. Try to keep the specifications simple. Submit this file in your git repository.
Requirements:

• The user must be able to get apples and bananas;

• The machine accepts up to 3eur, and not more than that;

• The machine must give change back when applicable;

• The machine can be powered off and powered on;

3

Self-peer-evaluation
Exercise 4. In a scale from 0-5, where 5 is better than 0, give a mark to you and each of your team
groups for each of the following criteria:

• Effort (time spent)

• Quality (of the work produced)

• Collaboration (how easy it was to meet and interact)

Send this information individually by e-mail or via private message in Teams to David Pereira and
José Proença. No justification is needed – e.g., “Group 3: João: Effort 5, Quality 4, Collaboration 5;
Maria: Effort 4, Quality 4, Collaboration 4; ...”.

4

