
7. Hoare Logic and Verification Condition Generation
Continued

David Pereira José Proença Eduardo Tovar
FVOCA 2021/2022
Formal Verification of Critical Applications

CISTER – ISEP
Porto, Portugal

https://cister-labs.github.io/fvoca2122

https://cister-labs.github.io/fvoca2122

The Simple Imperative Language
With Assertions and Specifications

Hoare Triples - review

Core concept
The atomic concept that we will be using in order to reason about the partial
correctness of programs is that known as Hoare Triple. It is a specification of the form

{P} C {Q}

that reads as follows: for all states satisfying the precondition P, if the program C
executes and terminates in a state satisfying the postcondition Q, then the triple is
valid.

2/22

A language for Hoare Triples

The syntax of the language that we will be using is an extension of the basic
Imperative Language with logical assertions, plus the concept of Hoare Triple.

x ∈ Identifiers
n ∈ Z

B ::= true | false | B &&B | B || B | !B | E < E | E = E (boolean-expr)
E ::= n | x | E + E | E ∗ E | E − E (int-expr)
C ::= skip | C ; C | x := E | if B then C else C | while B do C (command)
A ::= true | false | E < E | E = E | A ∧ A | A ∨ A | ¬A | A → A

| ∀x .A | ∃x .A (assertions)
S ::= {A} C {A} (specification/Hoare Triple)

3/22

Hoare Logic
Proof Rules and Verification Conditions Generation

On Verification Conditions Generation

From proof trees to algorithms
We have stated that a proof tree must be constructed to perform verification using
Hoare Logic. When we close all the trees via the application of one of the rules that
represents an axiom (e.g., skip rule or assignment rule), then we can state that a valid
proof is obtained. Still, it is a manual process, which we would really like to avoid.

Verification Conditions Generation
The process of constructing a proof tree can, fortunately, be replaced by an
algorithm. This algorithm, called Verification Conditions Generator, or VCGen for
short, applies a particular strategy for producing verification conditions that
correspond to the side conditions of a particular derivation

4/22

Verification Conditions Generation

How do these VCGen work?
• A VCGen algorithm takes as input a Hoare Triple {P} C {Q} and returns a set of

first-order logic proof obligations.
• The proof obligations represent side conditions of the form F1 → F2

5/22

Algorithm for weakest precondition generation

wprec(skip, Q) = Q
wprec(x := E , Q) = Q[x 7→ E]
wprec(C1; C2, Q) = wprec(C1, wprec(C2, Q))

wprec(if B then C1 else C2, Q) = (B → wprec(C1, Q)) ∧ (¬B → wprec(C2, Q))
wprec(while B do {I} C , Q) = I

6/22

Algorithm for generating Verification Conditions

VC({P} skip{Q}) = {P → Q}
VC({P} x := E {Q}) = {P → Q[x 7→ E]}
VC({P} C1; C2 {Q}) =

VC({P} C1 {wprec(C2, Q)}) ∪ VC({wprec(C2, Q)} C2 {Q})
VC({P} if B then C1 else C2 {Q}) =

VC({P ∧ B} C1{Q}) ∪ VC({P ∧ ¬B} C2 {Q})
VC({P} while B do {I} C {Q}) =

{P → I, I ∧ ¬B → Q} ∪ VC({P ∧ ¬B} C {Q})

7/22

From the Proof Rules into the
Weakest Precondition & VC
algorithms

From Program-Proof Rules to algorithms

Proof rule for skip
The skip command does not change the state of the program. Hence, the
precondition must imply the postcondition.

if P → Q{P} skip {Q}

WPrec and VC rules
From the algorithmic point of view we have:

wprec(skip, Q) = Q
VC({P} skip{Q}) = {P → Q}

8/22

From Program-Proof Rules to algorithms

The case of the assignment command
The assignment rule states a change in a value assigned to a variable. Hence, the
precondition P must imply that substitution.

if P → Q[x 7→ E]
{P} x := E {Q}

WPrec and VC rules
From the algorithmic point of view we have:

wprec(x := E , Q) = Q[x 7→ E]
VC({P} x := E {Q}) = {P → Q[x 7→ E]}

9/22

The Program-Proof System Rules

The case fo while loops
For sequences of commands, the goal is to find the intermediate condition R between
the two commands.

{P}C1{R} {R}C2{Q}
{P}C1; C2{Q}

WPrec and VC rules
From the algorithmic point of view we have:

wprec(C1; C2, Q) = wprec(C1, wprec(C2, Q))
VC({P} C1; C2 {Q}) = VC({P} C1 {wprec(C2, Q)}) ∪ VC({wprec(C2, Q)} C2 {Q})

10/22

The Program-Proof System Rules

The case of conditionals
In the case of conditionals, one must prove that independently of the value of the
Boolean B that serves as a guarda for the conditional, the postcondition holds.

{B ∧ P} C1 {Q} {¬B ∧ P} C2 {Q}
{P} if B then C1 else C2 {Q}

WPrec and VC rules
From the algorithmic point of view we have:

wprec(if B then C1 else C2, Q) = (B → wprec(C1, Q)) ∧ (¬B → wprec(C2, Q))
VC({P} if B then C1 else C2 {Q}) = VC({P ∧ B} C1{Q}) ∪ VC({P ∧ ¬B} C2 {Q})

11/22

Extending the annotation to while loops

The case fo while loops
The new rule for while loops now considers the invariant as an annotation:

{B ∧ I} C {I}
if P → I and I ∧ ¬B → Q{P} while B do {I} C {Q}

WPrec and VC rules
From the algorithmic point of view we have:

wprec(while B do {I} C , Q) = I
VC({P} while B do {I} C {Q}) = {P → I, I ∧ ¬B → Q} ∪ VC({P ∧ ¬B} C {Q})

12/22

Improving the VCGen

Improved Verification Condition Generation

VC(skip, Q) = ∅
VC(x := e, Q) = ∅
VC(C1; C2, Q) = VC(C1, wprec(C2, Q)) ∪ VC(C2, Q)

VC(if B then C1 else C2, Q) = VC(C1, Q) ∪ VC(C2, Q)
VC(while B do {I} C , Q) = {(I ∧ B) → wprec(C , I)} ∪ VC(C , I)

{(I ∧ ¬B) → Q}

VCG({P} C {Q}) = {P → wprec(C , Q)} ∪ VC(C , Q)

13/22

Propagation of annotations in code

Consider the following code:

Let us run the first wprec function on this. The actual call to the function will be

wprec(aux := y ; y := x ; x := x + aux , {x > 10 ∧ y == 5})

14/22

Running example - usage of wprec

wprec(aux := y ; y := x ; x := x + aux , {x > 10 ∧ y == 5}) =
wprec(aux := y , wprec(y := x ; x := x + aux , {x > 10 ∧ y == 5})) =

wprec(aux := y , wprec(y := x , wprec(x := x + aux , {x > 10 ∧ y == 5}))) =
wprec(aux := y , wprec(y := x , {x > 10 ∧ y == 5}[x 7→ x + aux])) =

wprec(aux := y , wprec(y := x , {x + aux > 10 ∧ y == 5})) =
wprec(aux := y , {x + aux > 10 ∧ y == 5}[y 7→ x]) =

wprec(aux := y , {x + aux > 10 ∧ x == 5}) =
{x + aux > 10 ∧ x == 5}[aux 7→ y] =

{x + y > 10 ∧ x == 5}

15/22

Running example - usage of VC

VC({x = 5 ∧ y = 10} aux := y ; y := x ; x := x + aux , {x > 10 ∧ y == 5}) =

(1) VC({x = 5 ∧ y = 10} aux := y {wprec(y := x ; x := x + aux , {x > 10 ∧ y == 5})})
∪

(2) VC({wprec(y := x ; x := x + aux , {x > 10 ∧ y == 5})}
y := x ; x := x + aux {x > 10 ∧ y == 5}) =

16/22

Running example - usage of VC (1)

(1) VC({x = 5 ∧ y = 10} aux := y {wprec(y := x ; x := x + aux , {x > 10 ∧ y = 5})})

=

VC({x = 5 ∧ y = 10} aux := y {wprec(y := x , wprec(x := x + aux , {x > 10 ∧ y = 5}))})

=

VC({x = 5 ∧ y = 10} aux := y {wprec(y := x , {x > 10 ∧ y = 5}[x 7→ x + aux])})

=

VC({x = 5 ∧ y = 10} aux := y {x > 10 ∧ y = 5}[x 7→ x + aux][y 7→ x])})

=

VC({x = 5 ∧ y = 10} aux := y {x + aux > 10 ∧ x = 5})

=

{(x = 5 ∧ y = 10) → (x + aux > 10 ∧ x = 5)[aux → y]}

=

{(x = 5 ∧ y = 10) → (x + y > 10 ∧ x = 5)}
17/22

Running example - usage of VC (2)

(2) VC({wprec(y := x ; x := x + aux , {x > 10 ∧ y = 5})} y := x ; x := x + aux {x > 10 ∧ y = 5})

=

VC({wprec(y := x , wprec(x := x + aux , {x > 10 ∧ y = 5}))} y := x ; x := x + aux {x > 10 ∧ y = 5})

=

VC({wprec(y := x , {x > 10 ∧ y == 5})[x 7→ x + aux]} y := x ; x := x + aux {x > 10 ∧ y = 5})

=

VC({x > 10 ∧ y = 5}[x 7→ x + aux][y 7→ x] y := x ; x := x + aux {x > 10 ∧ y == 5})

=

VC({x + aux > 10 ∧ y = 5}[y 7→ x] y := x ; x := x + aux {x > 10 ∧ y = 5})

=

VC({x + aux > 10 ∧ x = 5} y := x ; x := x + aux {x > 10 ∧ y = 5})

=
18/22

Running example - usage of VC (2)

VC({x + aux > 10 ∧ x = 5} y := x {wprec(x := x + aux , {x > 10 ∧ y = 5})})

∪

VC({wprec(x := x + aux , {x > 10 ∧ y = 5})} x := x + aux {x > 10 ∧ y = 5}) =

VC({x + aux > 10 ∧ x = 5} y := x{x > 10 ∧ y = 5}[x → x + aux])})

∪

VC({x > 10 ∧ y = 5}[x → x + aux])} x := x + aux {x > 10 ∧ y = 5}) =

VC({x + aux > 10 ∧ x = 5} y := x {x + aux > 10 ∧ y = 5})

∪

VC({x + aux > 10 ∧ y = 5} x := x + aux {x > 10 ∧ y = 5}) =

19/22

Running example - usage of VC (2)

{x + aux > 10 ∧ y = 5 → (x + aux > 10 ∧ y = 5)[y 7→ x]}

∪

{x + aux > 10 ∧ y = 5 → (x > 10 ∧ y = 5)[x 7→ x + aux]} =

{x + aux > 10 ∧ y = 5 → (x + aux > 10 ∧ x = 5)}

∪

{x + aux > 10 ∧ y = 5 → (x + aux > 10 ∧ y = 5)} =

20/22

Results from propagation

21/22

Weakest Preconditions

Weakest Preconditions

A new look at back propagation of annotations
• we have seen that back propagating annotations from postconditions works
• it can be realised as an algorithm
• such algorithm generates the so-called weakest preconditions of an annotated

code starting from its postcondition, that is, the weakes conditions that ensure
that a program C satisfies the postcondition Q if it terminates, that is

{wprec(C , Q)} C {Q}

• if we are able to prove that a precondition p → wprec(C , Q) holds, then we can
use this weakest precondition generation algorithm to help building the proof tree!

22/22

	The Simple Imperative Language With Assertions and Specifications
	Hoare Logic Proof Rules and Verification Conditions Generation
	From the Proof Rules into the Weakest Precondition & VC algorithms
	Improving the VCGen
	Weakest Preconditions

