
6. Hoare Logic and Verification Condition Generation

David Pereira José Proença Eduardo Tovar
FVOCA 2021/2022
Formal Verification of Critical Applications

CISTER – ISEP
Porto, Portugal

https://cister-labs.github.io/fvoca2122

https://cister-labs.github.io/fvoca2122

Recap Hoare Logic

Recall the target language’s syntax

The syntax of the language that we will be using is an extension of the basic
Imperative Language with logical assertions, plus the concept of Hoare Triple.

x ∈ Identifiers
n ∈ Z

B ::= true | false | B &&B | B || B | !B | E < E | E = E (boolean-expr)
E ::= n | x | E + E | E ∗ E | E − E (int-expr)
C ::= skip | C ; C | x := E | if B then C else C | while B do C (command)
A ::= true | false | E < E | E = E | A ∧ A | A ∨ A | ¬A | A → A

| ∀x .A | ∃x .A (assertions)
S ::= {A} C {A} (specification/Hoare Triple)

2/33

Hoare Triples - review

Core concept
The atomic concept that we will be using in order to reason about the partial
correctness of programs is that known as Hoare Triple. It is a specification of the form

{P} C {Q}

that reads as follows: for all states satisfying the precondition P, if the program C
executes and terminates in a state satisfying the postcondition Q, then the triple is
valid.

Design by Contract
These preconditions and postconditions, as well as other types of logical
specifications that we will see ahead, are also known as contracts, that is, they
bound the developer to implement code that satisfies the prescribed logical
specifications to ensure partial correctness. 3/33

Hoare Logic

Validity of Hoare Triples

How to check the validity of Hoare Triples?
• the usual method for assuring the validity of Hoare Triples is to use a sound

program-proof system.
• by sound one means that it should not allow to conclude specifications that are

not valid.

Program-Proof System
A program-proof system is a set of inference rules that can be seen as fundamental
laws about programs. In the next slides, we will present such rules.

4/33

The Program-Proof System Rules

The case of the skip command
The skip command does not change the state of the program. Hence, the
precondition and postconditions must be the same.

{P} skip {P}

5/33

The Program-Proof System Rules

The case of the assignment command
The assignment rule states that a postcondition Q can be granted for an assignment
command if the condition that results from substituting E for x in Q holds as
precondition.

{Q[x 7→ E]} x := E {Q}

Instances of the above axiom
• {Y = 2} x := 2 {Y = X}
• {x + 1 = n + 1} x := x + 1 {x = n + 1}
• {E = E} x := E {x = E}

6/33

The Program-Proof System Rules

The case of command sequence
When in the presence of a sequence of commands, we must prove that if the first
command C1 terminates in a postcondition R then, the second command C2,
satisfying R at start, if terminates, must do so in the prescribed postcondition Q.

{P}C1{R} {R}C2{Q}
{P}C1 ; C2{Q}

7/33

An example of the sequence rule

A short example
By the assignment axiom we have:

(i) {X = x ∧ Y = y} R := X {R = x ∧ Y = y}
(ii) {R = x ∧ Y = y} X := Y {R = x ∧ X = y}
(iii) {R = x ∧ X = y} Y := R {Y = x ∧ X = y}

By (i) and (ii) and the sequence rule we obtain

(iv) {X = x ∧ Y = y} R := X ; X := Y {R = x ∧ Y = y}

Now, by (iv) and (iii) we finish the deduction

{X = x ∧ Y = y} R := X ; X := Y ; Y := R {Y = x ∧ X = y}
8/33

The Program-Proof System Rules

The case of conditionals
In the case of conditionals, one must prove that independently of the value of the
Boolean B that serves as a guarda for the conditional.

{B ∧ P} C1 {Q} {¬B ∧ P} C2 {Q}
{P} if B then C1 else C2 {Q}

9/33

The Program-Proof System Rules

The case fo while loops
In the case of loops, we need to prove an invariant I (i.e., a condition that must hold
at the entry and exit of the loop) throughout all the iterations of the loop (we don’t
know beforehand how many will be).

{B ∧ I} C1 {I}
{I} while B do C1{I ∧ ¬B}

10/33

The Program-Proof System Rules

The case of logical consequence
This one is a special rule that deals only with logical assertions. It establishes a
connection with first-order logic by means of side conditions that are assertions rather
than specifications.

{P1} C {Q1}
{P} C {Q}

if P → P1 and Q1 → Q hold (these are called side-conditions of the rule). Note also
that this rule implies that Hoare logic is not meant to be used by itself; it must
always be accompanied by some device for establishing the validity of side conditions,
such as a decision procedure based on satisfiability, or an inference system for
first-order logic.

11/33

The Program-Proof System Rules

A simple example using the logical consequence rule
The small derivation below shows the applicability of the logical consequence rule,
followed by the assignment rule. The logical consequence rule generates two side
effects which can be trivially proved, and enables the application of the assignment
rule.

(assignment rule)
{x + 1 > 10} x := x + 1 {x > 10}

if x > 10 → x + 1 > 10 and x > 10 → x > 10{x > 10} x := x + 1 {x > 10}

12/33

How to deal with Hoare Logic proofs

Two ways
• directly encoding the inference system in the logic of the proof tool and reasoning

simultaneously with rules of both Hoare logic and first-order logic as required:
reasoning starts with the former but switches to the latter logic when side
conditions are introduced by the consequence rule.

• The alternative approach consists in two steps:
• A proof tree is constructed for the desired specification, assuming that the side

conditions generated by the consequence rule are valid
• An external proof tool is used (such as a theorem prover or a proof assistant) to

actually establish the validity of the side conditions
• several proof trees can be created for the same specification (e.g., in the previous

example we could weaken the precondition x > 10 to x + 2 > 10 instead of
x + 1 > 10, meaning that we would obtain two different proof trees that would give
the same conclusion. 13/33

On Verification Conditions Generation

From proof trees to algorithms
We have stated that a proof tree must be constructed to perform verification using
Hoare Logic. When we close all the trees via the application of one of the rules that
represents an axiom (e.g., skip rule or assignment rule), then we can state that a valid
proof is obtained. Still, it is a manual process, which we would really like to avoid.

Verification Conditions Generation
The process of constructing a proof tree can, fortunately, be replaced by an
algorithm. This algorithm, called Verification Conditions Generator, or VCGen for
short, applies a particular strategy for producing verification conditions that
correspond to the side conditions of a particular derivation

14/33

Verification Conditions Generation

How do these VCGen work?
A VCGen algorithm takes as input a Hoare Triple {P} C {Q} and returns a set of
first-order logic proof obligations (recall that assertions/specifications are first-order
logic formulas). As mentioned already, these proof obligations represent side
conditions of the form F1 → F2, but where program variables need to be scoped by a
universal quantifier (∀x , F1 → F2 in this case) to ensure validity.

Example
Again looking at the example presented for the logic consequence rule of Hoare logic,
the side condition x > 10 → x + 1 > 10 in reality should be
∀x , x > 10 → x + 1 > 10. That is, we prove that this side condition is a theorem!!!

Important: there are two possible sources of erros that may cause verification of a
Hoare triple to fail: (1) program errors and (2) specification errors! 15/33

Alternative Formulation of Hoare
Logic

Towards a new formulation

Desirable properties
• subformula property: the premises of a rule should not contain occurrences of

assertions that do not appear in the rule’s conclusion (otherwise we have to invent
formulas).

• unambiguity: a unique rule should be applicable in a backward fashion for the
goal at hand, so that the construction of the proof tree is syntax-directed (and
thus algorithmic).

We start by addressing the second desirable property, i.e., syntax-directed rules!

16/33

Syntax directed Hoare logic

Undesired properties of original formulation
• the skip rule can only be applied if the precondition and post condition are the

same;
• the assign rule can only be applied if the precondition results from the

postcondition by performing the corresponding substitution;
• the while rule can only be applied if the precondition is an invariant of the loop,

and the postcondition is the same invariant "strenghtened" with the negation of
the loop condition.

Important:
the application of the above rules to goals with arbitrary preconditions and
postconditions may very well require the application of the consequence rule! So this
rule has to be embedded somehow in a new set of rules to be syntax-directed!!! 17/33

Revised Program-Proof System Rules

The case of the skip command
The skip command does not change the state of the program. Hence, the
precondition and postconditions must be the same.

{P} skip {P}

By incorporating the consequence rule, we obtain a new rule:

if P → Q{P} skip {Q}

18/33

Revised Program-Proof System Rules

The case of the assignment command
The assignment rule states that a postcondition Q can be granted for an assignment
command if the condition that results from substituting E for x in Q holds as
precondition.

{Q[x 7→ E]} x := E {Q}

By incorporating the consequence rule, we obtain a new rule:

if P → Q[x 7→ E]
{P} x := E {Q}

19/33

The Program-Proof System Rules

The case fo while loops
In the case of loops, we need to prove an invariant I (i.e., a condition that must hold
at the entry and exit of the loop) throughout all the iterations of the loop (we don’t
know beforehand how many will be).

{B ∧ I} C1 {I}
{I} while B do C1{I ∧ ¬B}

By incorporating the consequence rule, we obtain a new rule:

{B ∧ I} C {I}
if P → I and I ∧ ¬B → Q{P} while B do C{Q}

20/33

Almost there to define a VCGen

Goal directed but no sub-formula property
We can definitely state that the new rules provide Hoare logic with a syntax-directed
approach: it consists of exactly one rule for each program construct, and
moreover, for a given specification {P} C {Q}, the rule matching the program C can
always be applied (granted that side conditions are met!), since the precondition and
postcondition are now arbitrary.

No sub-formula property
• the while rule lost the property since the invariant assertion no longer occurs in

the conclusion
• the rule for the sequence construct does not enjoy the property either, since the

intermediate assertion R does not occur in the conclusion

21/33

Program Annotations

The role of program annotations

Restoring the subformula property
One way to restore the subformula property in our current system for Hoare logic is
precisely to introduce human-provided annotations in the programs. An annotated
program is a program with assertions embedded within it.

Extending the language of commands

C ::= skip | C ; {A} C | x := E | if B then C else C | while B do {A} C

22/33

Some examples

Example 1
For instance, the command

while B do {I} C

denotes a loop with condition B and user-provided invariant I.

Example 2
For instance, the command C1; {A} C2 has the same meaning ot C ; C but the
assertion A must be true when the execution of C1 terminates.

23/33

Updating the sequence rule

The new case of command sequence
When in the presence of a sequence of commands, we must prove that if the first
command C1 terminates in a postcondition R then, the second command C2,
satisfying R at start, if terminates, must do so in the prescribed postcondition Q.

{P}C1{R} {R}C2{Q}
{P}C1 {R}; C2{Q}

24/33

Example of annotated Fibonnaci program

25/33

Extending the annotation to while loops

The case fo while loops
The new rule for while loops now considers the invariant as an annotation:

{B ∧ I} C {I}
if P → I and I ∧ ¬B → Q{P} while B do {I} C {Q}

26/33

Propagation of annotations in code

Annotating a program is definitely a tedious and error prone task. Nevertheless, there
are two ways to achieve it: vai forward propagation or via backward propagation. Lets
understand these via examples. Consider the following code:

27/33

Results from propagation

28/33

Weakest Preconditions

Weakest Preconditions

A new look at back propagation of annotations
• we have seen that back propagating annotations from postconditions works
• it can be realised as an algorithm
• such algorithm generates the so-called weakest preconditions of an annotated

code starting from its postcondition, that is, the weakes conditions that ensure
that a program C satisfies the postcondition Q if it terminates, that is

{wprec(C , Q)} C {Q}

• if we are able to prove that a precondition p → wprec(C , Q) holds, then we can
use this weakest precondition generation algorithm to help building the proof tree!

29/33

Algorithm for weakest precondition generation

wprec(skip, Q) = Q
wprec(x := E , Q) = Q[x 7→ E]
wprec(C1; C2, Q) = wprec(C1, wprec(C2, Q))

wprec(if B then C1 else C2, Q) = (B → wprec(C1, Q)) ∧ (¬B → wprec(C2, Q))
wprec(while B do {I} C , Q) = I

30/33

Algorithm for generating Verification Conditions

VC({P} skip{Q}) = {P → Q}
VC({P} x := E {Q}) = {P → Q[x 7→ E]}
VC({P} C1; C2 {Q}) = VC({P} C1 {wprec(C2, Q)})

∪
VC({wprec(C2, Q)} C2 {Q})

31/33

Algorithm for generating Verification Conditions

VC({P} if B then C1 else C2 {Q}) = VC({P ∧ B} C1{Q})
∪
VC({P ∧ ¬B} C2 {Q})

VC({P} while B do {I} C {Q}) = {P → I, I ∧ ¬B → Q}
∪
VC({P ∧ ¬B} C {Q})

32/33

Improved Verification Condition Generation

VC(skip, Q) = ∅
VC(x := e, Q) = ∅
VC(C1; C2, Q) = VC(C1, wprec(C2, Q)) ∪ VC(C2, Q)

VC(if B then C1 else C2, Q) = VC(C1, Q) ∪ VC(C2, Q)
VC(while B do {I} C) = {(I ∧ B) → wprec(C , I)} ∪ VC(C , I)

{(I ∧ ¬B) → Q}

VCG({P} C {Q}) = {P → wprec(C , Q)} ∪ VC(C , Q)

33/33

	Recap Hoare Logic
	Hoare Logic
	Alternative Formulation of Hoare Logic
	Program Annotations
	Weakest Preconditions

