
4. Operational Semantics

David Pereira José Proença Eduardo Tovar
FVOCA 2021/2022
Formal Verification of Critical Applications

CISTER – ISEP
Porto, Portugal

https://cister-labs.github.io/fvoca2122

https://cister-labs.github.io/fvoca2122

Why look into formal semantics

Programming languages, syntax, and semantics

When we first look into a programming language...
... at first, we typically look into its syntax, but:

• it just deals with correctly formed sentences;
• syntax is not concerned with soundness;
• thus, the programmer may get lost if it becomes necessary to check that

the specified program actually computes the intended operation

2/37

Programming languages, syntax, and semantics

Important note!
It is important that the semantics is formal, systematic and verifiable so that:

• the user has access to an unambiguous description of the effect of a program
• a starting point for a correct implementation
• a basis for program analysis and synthesis, i.e., transformation, optimisation,

and verification

Another important note!
actually showing a program to be correct is more work than writing the program
itself, but it is not a task to be neglected

3/37

States and types of operational
semantics

States in formal semantics

The meaning of programs
• Semantics of programming languages deals with the meaning of programs that

execute on a computer, runnig in memory and using various resources;
• to express execution correctly, we need also to consider the status of the

memory during execution.

State of a program
• The state of the memory is fundamental in all definitions of semantics
• we will consider only programs that compute through variables, hence we are

not interested in the contents of actual physical addresses
• will abstract from the actual memory and focus on the representation of the

values stored in variables
4/37

States in formal semantics

How we will represent states
We will use the notation

[x1 7→ v1, x2 7→ v2, . . . , xn 7→ vn],

where xi ∈ V are variable names (identifiers) and vi ∈ D represent values that are
assigned to the variables (in the scope of this class we will be considering mostly
integeres and Booleans)

5/37

Types of Operational Semantics

Classification of Operational Semantics

Operational Semantics
Focus on how the effect of a computation is produced: it is an abstraction of
machine execution in that it expresses the meaning of a program - running on a
machine in a specific state - by returning its result, the output.

Denotational Semantics
In this approach, the meaning of a program is a function, that maps the state of the
machine before execution to the state after execution.

Axiomatic Semantics
With this semantics, the properties of the effect of executing the constructs are
expressed as assertions

We will focus on (specific) operational semantics and axiomatic semantics!
6/37

Example with Operational Semantics

Looking at the differences in pratice
In the next slides we will look into the differences of the approaches with the
following toy example

z := x ; x := y ; y := z

and assuming the following existing assignment of variables to values:

• x 7→ 5
• y 7→ 7
• z 7→ 0

7/37

Example with Operational Semantics

We will be using the notation ⟨p, s⟩, where p denotes the program code, and s the
state, i.e., the mapping of values to variables names. Also, for now, lets assume that:

• to execute a sequence of statements, typically separated by ;, execute individual
statements from left to right;

• to execute an assignment x := v , first calculate the value of v and then assign it
to x .

⟨z := x ; x := y ; y := z , [x 7→ 5, y 7→ 7, z 7→ 0]⟩ ⇒
⟨x := y ; y := z , [x 7→ 5, y 7→ 7, z 7→ 5]⟩ ⇒

⟨y := z , [x 7→ 7, y 7→ 7, z 7→ 5]⟩ ⇒
⟨ϵ, [x 7→ 7, y 7→ 5, z 7→ 5]⟩

8/37

Example with Denotational Semantics

We will be using a mathematical function with the type State → State to evaluate the
code, denoted S[p], considering:

• executing a sequence of statements amounts at function composition, i.e.,
S[p1; p2] = S[p1] ◦ S[p2]

• executing an assignment x := v returns the current state where the mapping of
the variable x is updated as follows: S[x := v](s, y) = s(y) if x ̸= y , or v
otherwise, where s is the function representing the state and y a variable being
evaluated under the S interpretation.

9/37

Example with Denotational Semantics

Getting back to the running example, and using the definition of evaluation of program
sequence, we know that

S[z := x ; x := y ; y := z] = S[z := x] ◦ S[x := y] ◦ S[y := z]

Proceeding with the evaluation we have:

S[z := x ; x := y ; y := z]([x 7→ 5, y 7→ 7, z 7→ 0]) =
S[z := x] ◦ S[x := y] ◦ S[y := z]([x 7→ 5, y 7→ 7, z 7→ 0]) =

S[x := y] ◦ S[y := z]([x 7→ 5, y 7→ 7, z 7→ 5]) =
S[y := z]([x 7→ 7, y 7→ 7, z 7→ 5]) =

[x 7→ 5, y 7→ 7, z 7→ 5]

Note: For denotational semantics, the meaning of a program depends only on the
program itself. No state information is needed to establish a meaning.

10/37

Example with Axiomatic Semantics

Partial Correctness
Axiomatic semantics deals with partial correctness, i.e., it proves the correctness of a
program p with respect to its pre- and post-conditions. The usual representation is
as follows:

{Pre} p {Post}

which in the case of the running example can be instantiated to

{x = n ∧ y = m} z := x ; x := y ; y := z {x = m ∧ y = n}

that expresses that if the assigned values of x and y are, at the start of the program,
n and m, respectively, then when the program terminates, it must hold that their
values have been swapped.

11/37

Example with Axiomatic Semantics

Further ahead in this module of FVOCA we will look deeply into axiomatica semantics,
typically known as Hoare Logic. For now, lets look into a proof sketch that intuitively
shows how the actual proof, with the concrete rules for a well defined syntax of a
programming language, could take place

(P1) {x = n ∧ y = m} z := x {z = n ∧ y = m}
(P2) {z = n ∧ y = m} x := y {z = n ∧ x = m}
(P3) {x = n ∧ x = m} z := x ; x := y{z = n ∧ x = m}
(P4) {z = n ∧ x = m} y := z {y = n ∧ x = m}
(P5){x = n ∧ y = m} z := x ; x := y ; y := z {x = m ∧ y = n}

However, for more complex cases, this type of approach is not so easy to address:

{x = n ∧ y = m} while(true) do skip {x = m ∧ y = n} 12/37

So, what we will be learning in
FVOCA?

What will we be learning in this module of FVOCA?

Milestones to be achieved (Phase 1):
• Select a target programming language (abstract syntax)
• Select a semantics for that language (abstract semantics)
• Mathematically prove properties of programs written in the chosen language

Milestones to be achieved (Phase 2):
• How to extend the abstract semantics to allow logical annotations that

characterise code
• What logics and proof rules can be used to reason about annotated programs

abstract semantics
• Learn how to automate generation of proof obligations and use theorem provers in

practice
13/37

What will we be learning in this module of FVOCA?

Today we will look once again into operational semantics and, in the practical class,
start to design and program our own FVOCA interpreters! Focus will be on operational
semantics, namely structural operational semantics (we will dive into this type of
semantics still in this class!)

14/37

A Simple Imperative Language

WhileInt – Syntax

x ∈ Identifiers
n ∈ Numerals
B ::= true | false | B ∧ B | B ∨ B | ¬B | E < E | E = E (boolean-expr)
E ::= n | x | E + E | E ∗ E | E − E (int-expr)
C ::= skip | C ; C | x := E | if B then C else C | while B do C (command)

Assume operators to be left associative.
Use ‘{’ and ‘}’ to clarify precedence when necessary.

15/37

Natural Semantics - a quick
overview

Natural Semantics

A type of operational semantics
Natural semantics, aka Big-Step Semantics, are operational semantics that directly
give the results of the code under evaluation. They don’t consider intermediate steps
and therefore are not suited to programming languages with constructs that need
fine-grained analysis, e.g., concurrency. or concurrency

Mathematical view of Natural Semantics
To make a proper evaluation under the context of natural semantics, we consider a
relation ⇝ that maps a configuration of the program ⟨p, s⟩ into its final result, which
must be a member of the domain (in the case presented here, either Boolean values
or integers). The evaluation of a variable v in a state s is denoted s(v).

16/37

Natural Semantics – booleans and integers

(var)

⟨x , s⟩⇝ s(x)

(true)

⟨true, s⟩⇝ true

(false)

⟨false, s⟩⇝ false

(int)

⟨n, s⟩⇝ n

⟨B, s⟩⇝ false

⟨B ∧ B′, s⟩⇝ false

⟨B, s⟩⇝ true ⟨B′, s⟩⇝ s ′

⟨B ∧ B′, s⟩⇝ s ′

⟨B, s⟩⇝ true

⟨B ∨ B′, s⟩⇝ true

⟨B, s⟩⇝ false ⟨B′, s⟩⇝ s ′

⟨B ∨ B′, s⟩⇝ s ′

⟨E , s⟩⇝ n ⟨E ′, s⟩⇝ n′

⟨E ⊙ E ′, s⟩⇝ n ⊙ n′
where ⊙ ∈ {+, −, ∗}

17/37

Natural Semantics – commands

(skip)

⟨skip, s⟩⇝ s

(assign)
⟨E , s⟩⇝ n

⟨x :=E , s⟩⇝ s[x 7→ n]

(seq)
⟨C1, s⟩⇝ s ′ ⟨C2, s ′⟩⇝ s ′′

⟨C1; C2 , s⟩⇝ s ′′

(if-then)
⟨B, s⟩⇝ true ⟨Ct , s⟩⇝ s ′

⟨if B then Ct else Cf , s⟩⇝ s ′

(if-else)
⟨B, s⟩⇝ false ⟨Cf , s⟩⇝ s ′

⟨if B then Ct else Cf , s⟩⇝ s ′

(while-false)
⟨B, s⟩⇝ false

⟨while B do C , s⟩⇝ s ′

(while-true)
⟨B, s⟩⇝ true ⟨C , s⟩⇝ s ′ ⟨while B do C , s ′⟩⇝ s ′′

⟨while B do C , s⟩⇝ s ′′

18/37

Structural Operational Semantics

Structural Operational Semantics (SOS)

Focus of SOS
Structural Operational Semantics have as main focus the individual steps of the
execution of the program.

Differences wrt. Natural Semantics
Like Natural Semantics, the steps are defined as transitions, but the right hand-side
of the transition may not be the final state, but rather some intermediate step of
computaion.

19/37

Structural Operational Semantics – arithmetic expressions

Expressions are evaluated as functions from variable identifiers onto integers. The rules are:

(var)
s(x) = n

⟨x , s⟩ =⇒ ⟨n, s⟩

(add/mul/sub/div-l)
⟨E1, s⟩ =⇒ ⟨E ′

1, s⟩

⟨E1 ⊙ E2 , s⟩ =⇒ ⟨E ′
1 ⊙ E2, s⟩

(add/mul/sub/div-r)
⟨E2 , s⟩ =⇒ ⟨E ′

2, s⟩

⟨n ⊙ E2 , s⟩ =⇒ ⟨n ⊙ E ′
2, s⟩

(add/mul/sub/div)
n ⊙I m = p ∈ I

⟨n ⊙ m , s⟩ =⇒ ⟨p, s⟩

where ⊙ ∈ {+, −, ∗} and ⊙I stands for the concrete operation on the domain of integers.

20/37

Structural Operational Semantics – Boolean expressions

Expressions are evaluated as functions from variable identifiers onto integers. The rules are:

(not-l)
⟨B, s⟩ =⇒ ⟨B′, s⟩

⟨¬B, s⟩ =⇒ ⟨¬B′, s⟩

(not-true)
b = true

⟨¬b, s⟩ =⇒ ⟨false, s⟩

(not-false)
b = false

⟨¬b, s⟩ =⇒ ⟨true, s⟩

(and/or-l)
⟨B1, s⟩ =⇒ ⟨B′

1, s⟩

⟨B1 ⊙ B2 , s⟩ =⇒ ⟨B′
1 ⊙ B2, s⟩

(and/or-r)
⟨B2 , s⟩ =⇒ ⟨B′

2, s⟩

⟨b ⊙ B2 , s⟩ =⇒ ⟨b ⊙ B′
2, s⟩

(and/or)
p1 ⊙I p2 = p ∈ B

⟨p1 ⊙ p2 , s⟩ =⇒ ⟨p, s⟩
where ⊙ ∈ {∧, ∨} and ⊙B stands for the concrete operation on the domain of integers.

21/37

Structural Operational Semantics – commands

(assign-1)
⟨E , s⟩ =⇒ ⟨E ′, s⟩

⟨x :=E , s⟩ =⇒ ⟨x :=E ′, s⟩

(assign-2)

⟨x :=n, s⟩ =⇒ ⟨skip, s[x 7→ n]⟩
(seq)

⟨C1, s⟩ =⇒ ⟨C ′
1, s ′⟩

⟨C1; C2 , s⟩ =⇒ ⟨C ′
1; C2, s ′⟩

(seq-skip)

⟨skip; C2 , s⟩ =⇒ ⟨C2, s⟩

(if-then)
⟨B, s⟩⇝ true

⟨if B then Ct else Cf , s⟩ =⇒ ⟨Ct , s⟩

(if-else)
⟨B, s⟩⇝ false

⟨if B then Ct else Cf , s⟩ =⇒ ⟨Cf , s⟩

(while)

⟨while B do C , s⟩ =⇒ ⟨if B then (C ; while B do C) else skip, s⟩
22/37

Example with expressions

Let’s assume two variables, foo and bar , a state s : Var → I such that s(foo) = 4 and
s(bar) = 3. Let’s now provide a reasoning for the calculation of (foo + 2) × (bar + 1)

⟨foo + 2, s⟩ =⇒ ⟨E ′
1, s⟩

(mul-l)
⟨(foo + 2) × (bar + 1), s⟩ =⇒ ⟨E ′

1 × (bar + 1), s⟩

We now have to show that the premise actually holds and thus need to find what E ′
1 is.

⟨foo, s⟩ =⇒ ⟨E ′′
1 , s⟩

(add-l)
⟨foo + 2, s⟩ =⇒ ⟨E ′′

1 + 2, s⟩

Now it is enough to apply the rule that maps values to variable identifiers.

s(foo) = 4
(var)

⟨foo, s⟩ =⇒ ⟨4, s⟩

But we are not yet finished; lets continue in the next slide!
23/37

Example with expressions

Now that we know the previous derivations we can proceed with the substitution and make a
reduction tep using the (add) rule.

⟨4 + 2, s⟩ =⇒ ⟨6, s⟩
(add)

⟨(4 + 2) × (bar + 1), s⟩ =⇒ ⟨6 × (bar + 1), s⟩

We now have to show that the premise actually holds and thus need to find what E ′
1 is.

s(bar) = 3
(var)

⟨bar , s⟩ =⇒ ⟨3, s⟩
(add-l)

⟨bar + 1, s⟩ =⇒ ⟨E ′
2, s⟩

(add-r)
⟨6 × (bar + 1), s⟩ =⇒ ⟨6 × E ′

2 + 2, s⟩

We can now proceed as before, and obtain the desired derivation.

24/37

Example

Let us start with a very simple example (and ignore skip command in the application of
the transition rules for simplicity.

⟨x := 1, s⟩ =⇒ ⟨skip, s[x 7→ 1]⟩
⟨x := 1; y := 2, s[x 7→ 1]⟩ =⇒ ⟨y := 2, s[x 7→ 1]⟩

⟨x := 1; y := 2; z := 3, s⟩ =⇒ ⟨y := 2; z := 3, s[x 7→ 1]⟩

Truth to be told, we just need one proof step (using associativity of sequence)1!

⟨x := 1, s⟩ =⇒ ⟨skip, s[x 7→ 1]⟩
⟨x := 1; y := 2; z := 3, s⟩ =⇒ ⟨y := 2; z := 3, s[x 7→ 1]⟩

1We will learn more about associativity and other properties on upcoming lectures.

25/37

Interesting Extensions

WhileInt – Adding variables declarations and procedure definitions

x ∈ Identifiers
n ∈ Numerals
p ∈ Procedure Identifiers
B ::= true | false | B ∧ B | B ∨ B | ¬B | E < E | E = E (boolean-expr)
E ::= n | x | E + E | E ∗ E | E − E (int-expr)

Dv ::= var x ::= E ; Dv ? (var-decl)
Dp ::= proc p is C ; Dp? (var-decl)
C ::= skip | C ; C | x := E | if B then C else C | while B do C | call p (command)

26/37

Aborting execution

Add a new keyword to commands:

C ::= skip | . . . | abort (command)

Introduce the following rule in the semantics:
(abort-NS)

⟨abort, s⟩⇝ ⊥

(abort-SOS)

⟨abort, s⟩ =⇒ ⟨skip, ⊥⟩

27/37

Non-Determinism

Add a new keyword to commands:

C ::= skip | . . . | C1 or C2 (command)

Introduce the following rule in the semantics:
(ndet-l)

⟨C1, s⟩ =⇒ ⟨C ′
1, s ′⟩

⟨C1 or C2, s⟩ =⇒ ⟨C ′
1 or C2, s ′⟩

(ndet-l)

⟨C2, s⟩ =⇒ ⟨C ′
2, s ′⟩

⟨C1 or C2, s⟩ =⇒ ⟨C1 or C ′
2, s ′⟩

28/37

WhileInt with assertions – Syntax

x ∈ Identifiers
n ∈ Numerals
B ::= true | false | B ∧ B | B ∨ B | ¬B | E ⊙ E (boolean-expr)
E ::= n | x | E + E | E ∗ E | E − E (int-expr)
C ::= skip | C ; C | I := E | if B then C else C | while B do C |

assert(B) (command)

Where ⊙ ∈ {<, >, ≤, ≥, ==}.

29/37

Structural Operational Semantics of
Machine Code

Beyond the Simple Imperative Language

Do we need to stick to IMP?
So far we have been looking into simple imperative languages, similar to the C family
of languages (well, in reality, a very reduced version of such languages). But what
about other families of languages? Indeed it is possible to define other types of
languages, and we will be looking into an abstract assembly language!

Establishing the basis
Assembly-like languages usually consider registers and a stack, in their more simplest
form. So, we will be looking into a language that consists of "configurations" of the
type

⟨c, e, s⟩

such that c is a program, e is the evolution stack, and s is the storage (i.e., it keeps
the "variables"). The evaluation stack can be seen as an infinite list of elements in
(Z ∪ B). 30/37

Syntax

x ∈ Identifiers
n ∈ Numerals

inst ::= PUSH n | ADD | MULT | SUB | TRUE | FALSE |
EQ | LE | AND | NEG | FETCH x | STORE x | NOOP
BRANCH(c, c) | LOOP(c, c) (instructions)

c ::= ϵ | inst : c (code)

31/37

Semantics

⟨PUSH n : c, e, s⟩ =⇒ ⟨c, n : e, s⟩
⟨ADD : c, n1 : n2 : e, s⟩ =⇒ ⟨c, (n1 + n2) : e, s⟩
⟨SUB : c, n1 : n2 : e, s⟩ =⇒ ⟨c, (n1 − n2) : e, s⟩

⟨MULT : c, n1 : n2 : e, s⟩ =⇒ ⟨c, (n1 × n2) : e, s⟩
⟨TRUE : c, e, s⟩ =⇒ ⟨c, tt : e, s⟩
⟨FALSE : c, e, s⟩ =⇒ ⟨c, ff : e, s⟩

⟨EQ : c, n1 : n2 : e, s⟩ =⇒ ⟨c, (n1 = n2) : e, s⟩
⟨LE : c, n1 : n2 : e, s⟩ =⇒ ⟨c, (n1 ≤ n2) : e, s⟩

⟨AND : c, b1 : b2 : e, s⟩ =⇒ ⟨c, (b1 ∧ b2) : e, s⟩
⟨NEG : c, b : e, s⟩ =⇒ ⟨c, (¬b) : e, s⟩

32/37

Semantics

⟨FETCH n : c, e, s⟩ =⇒ ⟨c, s(x) : e, s⟩
⟨STORE n : c, e, s⟩ =⇒ ⟨c, e, s[x 7→ n]⟩

⟨NOOP : c, e, s⟩ =⇒ ⟨c, e, s⟩
⟨BRANCH(c1, c2) : c, b : e, s⟩ =⇒ ⟨c1 : c, e, s⟩ if b = tt
⟨BRANCH(c1, c2) : c, b : e, s⟩ =⇒ ⟨c1 : c, e, s⟩ if b = ff

⟨LOOP(c1, c2) : c, e, s⟩ =⇒ ⟨c1 : BRANCH(c2 : LOOP(c1, c2), NOOP) : c, e, s⟩

33/37

A small example

Lets go through a simple example, where we assume that the value of the variable x is
3.

⟨PUSH 1 : FETCH x : ADD : STORE x , ϵ, s⟩ =⇒
⟨FETCH x : ADD : STORE x , 1, s⟩ =⇒

⟨ADD : STORE x , 3 : 1, s⟩ =⇒
⟨STORE x , 4, s⟩ =⇒

⟨ϵ, ϵ, s[x 7→ 4]⟩

34/37

Formal Semantics are Fun, but what can we do with them?

Certified Compilation
One particular important application of formal semantics is certified compilation, that
is, the process of transforming high-level source code into a machine level instruction
set if guaranteed (i.e., mathematically proved), is correct.

Steps
• Define an instruction set and the mathematic meaning of its instructions, i.e., the

rules for a formal semantics
• Define a translation function
• Prove that if ⟨C , s⟩ =⇒hlc ⟨skip, s ′⟩, then ⟨T (C), s⟩ =⇒llc ⟨NOOP, s ′⟩2

2NOOP means an abstraction of no-operation, which can be represented differently depending on the
instruction set.

35/37

Suggested exercises for practicing - I

Construct your own command and semantic rules
As a first exercise, I would like to appeal to your criativity and do the following:

• select a command that is not available in our simple imperative language, provide
its abstract syntax and either Natural Semantics or Structural Operational
Semantics transition rules/steps;

• in the case when the new command’s transition rules are defined by translating
into combinations of primitive rules, try to provide an alternative formulation that
does not use those primitive rules.

• if needed, you can also extend the type of state of a program. Remember that
currently on a function mapping variable identifiers to values in I is defined.

36/37

Suggested exercises for practicing - II

Construct your own formal semantics interpreter
As a second exercise, I would like to appeal to your passion for coding do the
following:

• select the programming language that most suits you. For simplicity I suggest
Python, and highly suggest that you avoid system programming languages such as
C.

• find a representation for the abstract syntax of expressions and commands using
the facilities of the chosen programming language

• experiment implementing a Natural Semantics interpreter
• by the way, next laboratory language will be dedicated to these to exercises, so

don’t forget to bring laptops!

37/37

	Why look into formal semantics
	States and types of operational semantics
	Types of Operational Semantics
	So, what we will be learning in FVOCA?
	A Simple Imperative Language
	Natural Semantics - a quick overview
	Structural Operational Semantics
	Interesting Extensions
	Structural Operational Semantics of Machine Code

