
3. A Not So Formal Introduction to Formal Verification of
Program Code

David Pereira José Proença Eduardo Tovar
FVOCA 2021/2022
Formal Verification of Critical Applications

CISTER – ISEP
Porto, Portugal

https://cister-labs.github.io/fvoca2122

https://cister-labs.github.io/fvoca2122

Once Upon a A While Language . . .

What will we be learning in this module of FVOCA?

Milestones to be achieved (Phase 1):
• Select a target programming language (abstract syntax)
• Select a semantics for that language (abstract semantics)
• Mathematically prove properties of programs written in the chosen language

Milestones to be achieved (Phase 2):
• How to extend the abstract semantics to allow logical annotations that

characterise code
• What logics and proof rules can be used to reason about annotated programs

abstract semantics
• Learn how to automate generation of proof obligations and use theorem provers in

practice
2/19

WhileInt – Syntax

x ∈ Identifiers
n ∈ Numerals
B ::= true | false | B ∧ B | B ∨ B | ¬B | E < E | E = E (boolean-expr)
E ::= n | x | E + E | E ∗ E | E − E (int-expr)
C ::= skip | C ; C | x := E | if B then C else C | while B do C (command)

Assume operators to be left associative.
Use ‘{’ and ‘}’ to clarify precedence when necessary.

3/19

Natural Semantics – booleans and integers

(var)

⟨x , s⟩⇝ s(x)

(true)

⟨true, s⟩⇝ true

(false)

⟨false, s⟩⇝ false

(int)

⟨n, s⟩⇝ n

⟨B, s⟩⇝ false

⟨B ∧ B′, s⟩⇝ false

⟨B, s⟩⇝ true ⟨B′, s⟩⇝ s ′

⟨B ∧ B′, s⟩⇝ s ′

⟨B, s⟩⇝ true

⟨B ∨ B′, s⟩⇝ true

⟨B, s⟩⇝ false ⟨B′, s⟩⇝ s ′

⟨B ∨ B′, s⟩⇝ s ′

⟨E , s⟩⇝ n ⟨E ′, s⟩⇝ n′

⟨E ⊙ E ′, s⟩⇝ n ⊙ n′
where ⊙ ∈ {+, −, ∗}

4/19

Natural Semantics – commands

(skip)

⟨skip, s⟩⇝ s

(assign)
⟨E , s⟩⇝ n

⟨x :=E , s⟩⇝ s[x 7→ n]

(seq)
⟨C1, s⟩⇝ s ′ ⟨C2, s ′⟩⇝ s ′′

⟨C1; C2 , s⟩⇝ s ′′

(if-then)
⟨B, s⟩⇝ true ⟨Ct , s⟩⇝ s ′

⟨if B then Ct else Cf , s⟩⇝ s ′

(if-else)
⟨B, s⟩⇝ false ⟨Cf , s⟩⇝ s ′

⟨if B then Ct else Cf , s⟩⇝ s ′

(while-false)
⟨B, s⟩⇝ false

⟨while B do C , s⟩⇝ s ′

(while-true)
⟨B, s⟩⇝ true ⟨C , s⟩⇝ s ′ ⟨while B do C , s ′⟩⇝ s ′′

⟨while B do C , s⟩⇝ s ′′

5/19

Structural Operational Semantics (SOS)

Focus of SOS
Structural Operational Semantics have as main focus the individual steps of the
execution of the program.

Differences wrt. Natural Semantics
Like Natural Semantics, the steps are defined as transitions, but the right hand-side
of the transition may not be the final state, but rather some intermediate step of
computaion.

6/19

Structural Operational Semantics – expressions

Expressions are evaluated as functions from variable identifiers onto integers (similarly to
natural semantics). However, in SOS, all reduction steps are accounted in the reduction rules
and consider all intermediate states.

(var)
s(x) = n

⟨x , s⟩ =⇒ ⟨n, s⟩

(add/mul/sub/div-l)
⟨E1, s⟩ =⇒ ⟨E ′

1, s⟩

⟨E1 ⊙ E2 , s⟩ =⇒ ⟨E ′
1 ⊙ E2, s⟩

(add/mul/sub/div-r)
⟨E2 , s⟩ =⇒ ⟨E ′

2, s⟩

⟨n ⊙ E2 , s⟩ =⇒ ⟨n ⊙ E ′
2, s⟩

(add/mul/sub/div)
n ⊙I m = p ∈ I

⟨n ⊙ m , s⟩ =⇒ ⟨p, s⟩
where ⊙ ∈ {+, −, ∗} and ⊙I stands for the concrete operation on the domain of integers.
Please note that this semantics is not considering errors, e.g., when faced with a division by 0.
That requires changing the notion of state so that it incorporates the concept of "program
going wrong".

7/19

Example with expressions

Let’s assume two variables, foo and bar , a state s : Var → I such that s(foo) = 4 and
s(bar) = 3. Let’s now provide a reasoning for the calculation of (foo + 2) × (bar + 1)

⟨foo + 2, s⟩ =⇒ ⟨E ′
1, s⟩

(mul-l)
⟨(foo + 2) × (bar + 1), s⟩ =⇒ ⟨E ′

1 × (bar + 1), s⟩

We now have to show that the premise actually holds and thus need to find what E ′
1 is.

⟨foo, s⟩ =⇒ ⟨E ′′
1 , s⟩

(add-l)
⟨foo + 2, s⟩ =⇒ ⟨E ′′

1 + 2, s⟩

Now it is enough to apply the rule that maps values to variable identifiers.

s(foo) = 4
(var)

⟨foo, s⟩ =⇒ ⟨4, s⟩

But we are not yet finished; lets continue in the next slide!
8/19

Example with expressions

Now that we know the previous derivations we can proceed with the substitution and make a
reduction step using the (add) rule.

⟨4 + 2, s⟩ =⇒ ⟨6, s⟩
(add)

⟨(4 + 2) × (bar + 1), s⟩ =⇒ ⟨6 × (bar + 1), s⟩

We now have to show that the premise actually holds and thus need to find what E ′
1 is.

s(bar) = 3
(var)

⟨bar , s⟩ =⇒ ⟨3, s⟩
(add-l)

⟨bar + 1, s⟩ =⇒ ⟨E ′
2, s⟩

(add-r)
⟨6 × (bar + 1), s⟩ =⇒ ⟨6 × E ′

2 + 2, s⟩

We can now proceed as before, and obtain the desired derivation.

9/19

Structural Operational Semantics – commands

(assign-1)
⟨E , s⟩ =⇒ ⟨E ′, s⟩

⟨x :=E , s⟩ =⇒ ⟨x :=E ′, s⟩

(assign-2)

⟨x :=n, s⟩ =⇒ ⟨skip, s[x 7→ n]⟩
(seq)

⟨C1, s⟩ =⇒ ⟨C ′
1, s ′⟩

⟨C1; C2 , s⟩ =⇒ ⟨C ′
1; C2, s ′⟩

(seq-skip)

⟨skip; C2 , s⟩ =⇒ ⟨C2, s⟩

(if-then)
⟨B, s⟩⇝ true

⟨if B then Ct else Cf , s⟩ =⇒ ⟨Ct , s⟩

(if-else)
⟨B, s⟩⇝ false

⟨if B then Ct else Cf , s⟩ =⇒ ⟨Cf , s⟩

(while)

⟨while B do C , s⟩ =⇒ ⟨if B then (C ; while B do C) else skip, s⟩
10/19

Example

Let us start with a very simple example (and ignore skip command in the application of
the transition rules for simplicity.

⟨x := 1, s⟩ =⇒ ⟨skip, s[x 7→ 1]⟩
⟨x := 1; y := 2, s[x 7→ 1]⟩ =⇒ ⟨y := 2, s[x 7→ 1]⟩

⟨x := 1; y := 2; z := 3, s⟩ =⇒ ⟨y := 2; z := 3, s[x 7→ 1]⟩

Truth to be told, we just need one proof step (using associativity of sequence)1!

⟨x := 1, s⟩ =⇒ ⟨skip, s[x 7→ 1]⟩
⟨x := 1; y := 2; z := 3, s⟩ =⇒ ⟨y := 2; z := 3, s[x 7→ 1]⟩

1We will learn more about associativity and other properties on upcoming lectures.

11/19

Suggested exercises for practicing - I

Construct your own command and semantic rules
As a first exercise, I would like to appeal to your criativity and do the following:

• select a command that is not available in our simple imperative language, provide
its abstract syntax and either Natural Semantics or Structural Operational
Semantics transition rules/steps;

• in the case when the new command’s transition rules are defined by translating
into combinations of primitive rules, try to provide an alternative formulation that
does not use those primitive rules.

• if needed, you can also extend the type of state of a program. Remember that
currently on a function mapping variable identifiers to values in I is defined.

12/19

Suggested exercises for practicing - II

Construct your own formal semantics interpreter
As a second exercise, I would like to appeal to your passion for coding do the
following:

• select the programming language that most suits you. For simplicity I suggest
Python, and highly suggest that you avoid system programming languages such as
C.

• find a representation for the abstract syntax of expressions and commands using
the facilities of the chosen programming language

• experiment implementing a Natural Semantics interpreter
• by the way, next laboratory language will be dedicated to these to exercises, so

don’t forget to bring laptops!

13/19

Formal Semantics are Fun, but what can we do with them?

Certified Compilation
One particular important application of formal semantics is certified compilation, that
is, the process of transforming high-level source code into a machine level instruction
set if guaranteed (i.e., mathematically proved), is correct.

Steps
• Define an instruction set and the mathematic meaning of its instructions, i.e., the

rules for a formal semantics
• Define a translation function
• Prove that if ⟨C , s⟩ =⇒hlc ⟨skip, s ′⟩, then ⟨T (C), s⟩ =⇒llc ⟨NOOP, s ′⟩2

2NOOP means an abstraction of no-operation, which can be represented differently depending on the
instruction set.

14/19

Interesting Extensions

WhileInt – Adding variables declarations and procedure definitions

x ∈ Identifiers
n ∈ Numerals
p ∈ Procedure Identifiers
B ::= true | false | B ∧ B | B ∨ B | ¬B | E < E | E = E (boolean-expr)
E ::= n | x | E + E | E ∗ E | E − E (int-expr)

Dv ::= var x ::= E ; Dv ? (var-decl)
Dp ::= proc p is C ; Dp? (var-decl)
C ::= skip | C ; C | x := E | if B then C else C | while B do C | call p (command)

15/19

Aborting execution

Add a new keyword to commands:

C ::= skip | . . . | abort (command)

Introduce the following rule in the semantics:
(abort-NS)

⟨abort, s⟩ =⇒ ⊥

(abort-SOS)

⟨abort, s⟩ =⇒ ⟨skip, ⊥⟩

16/19

Non-Determinism

Add a new keyword to commands:

C ::= skip | . . . | C1 or C2 (command)

Introduce the following rule in the semantics:
(ndet-l)

⟨C1, s⟩ =⇒ ⟨C ′
1, s ′⟩

⟨C1 or C2, s⟩ =⇒ ⟨C ′
1 or C2, s ′⟩

(ndet-l)

⟨C2, s⟩ =⇒ ⟨C ′
2, s ′⟩

⟨C1 or C2, s⟩ =⇒ ⟨C1 or C ′
2, s ′⟩

17/19

What can go wrong?

Assuming a well written program
• using an undefined variable
• loops never end
• the result is unexpected
• . . .

18/19

WhileInt with assertions – Syntax

x ∈ Identifiers
n ∈ Numerals
B ::= true | false | B ∧ B | B ∨ B | ¬B | E < E | E = E (boolean-expr)
E ::= n | x | E + E | E ∗ E | E − E (int-expr)
C ::= skip | C ; C | I := E | if B then C else C | while B do {ϕ}C (command)
ϕ ::= true | false | x | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ∀x .ϕ | ∃x .ϕ

Assume operators to be left associative.
Use ‘{’ and ‘}’ to clarify precedence when necessary.

19/19

	Once Upon a A While Language …
	Interesting Extensions

