2. Real-time models: Verifying Timed Automata

David Pereira José Proenca Eduardo Tovar

FVOCA 2021/2022
Formal Verification of Critical Applications

CISTER - ISEP
Porto, Portugal

https://cister-labs.github.io/fvoca2122

https://cister-labs.github.io/fvoca2122

Behavioural Equivalences

Traces

Definition
A timed trace over a is a (finite or infinite) sequence (t1, a1), (t2, a2),- - in
R¢ x Act such that there exists a path

<£07770> i> <€077]1> i> <€1,?72> i} <£17n3> i} e

such that
ti=ti_1+d;

with tp = 0 and, for all clock x, 79 x = 0.

Intuitively, each t; is an absolute time value acting as a

All results from now on are given over an arbitrary ; they naturally apply to 7 (ta)
for any timed automata ta. 2/32

Traces

Ex. 2.1: Write 4 possible timed traces

Lamp

y<5
press?

bright

3/32

Traces

Given a timed trace tc, the corresponding

Ex.2.2: Why?
untimed trace is (m)* tc.
LEQ EQ
Definition
x:=0
= two states s; and s, of a timed LTS are el

timed-language equivalent if the set of
finite timed traces of s; and s, coincide;

= ... similar definition for

untimed-language equivalent ...

are not timed-language equivalent

4/32

Bisimulation

Timed bisimulation (between states of timed LTS)
A relation R is a timed simulation iff whenever s; Rs,, for any action a and delay d,

a . g a
s1 —> s; = there is a transition s, —— s, A s{Rs)

d . o d
s1 — s; = there is a transition s, — s3 A s{Rs)

And a timed bisimulation if its converse is also a timed simulation.

5/32

Bisimulation

Example
W1-Z1
W1 w2 W3
® 0 0
e W1 bisimilar to Z1?
Z1 72 Z3
@ =t ® -0
=

6/32

Bisimulation

Example

W1-71

W1 w2 w3

® 0 0

a W1 bisimilar to Z1?
71 22 73
® 00
x:=0
(W1 {x—0}),(Z1,{x— 0})) €R
where
R = {{{(W1l,{x~ d}) (Z1,{x—d})) |deR§} U

{{W2,{x—d+1}) ,(Z2,{x~d})) |deR§} U
{{{(W3,{x — d}) (Z3,{x—e})) |d,eeR{} 6/32

Untimed Bisimulation

Untimed bisimulation
A relation R is an untimed simulation iff whenever s; Rs,, for any action a and delay t,

a . e a
s1 — s; = there is a transition s, — s3 A s5;Rs)
d . .. d I P!
sy — 51 = there is a transition s, — s, A 51 Rs,

And it is an untimed bisimulation if its converse is also an untimed simulation.

Alternatively, it can be defined over a modified LTS in which all delays are abstracted on a

unique, special transition labelled by e.

7/32

Untimed Bisimulation

Ex. 2.3: W1 bisimilar to Z17?

Al W2
() x<=1 ()
x:=0
Z1 Z2

<) xX<=2 ()
x:=0

8/32

Untimed Bisimulation

Ex. 2.3: W1 bisimilar to Z17?

Al W2
<> x<=1 ()
x:=0
Z1 Z2

() xX<=2 ()
x:=0

(W1, {x — 0}), (Z1,{x — 0})) € R

where
R = {{(Wl{x—d}),(Z1,{x—d'})) |0<d<1,0<d <2} U

8/32

Behavioural Properties

Properties: expression and satisfaction

The satisfaction problem
Given a timed automata, ta, and a property, ¢, show that

T(ta) = ¢

9/32

Properties: expression and satisfaction

The satisfaction problem
Given a timed automata, ta, and a property, ¢, show that

T(ta) = ¢

= in which logic language shall ¢ be specified?

= how is = defined?

9/32

Expressing properties: Uppaal

Uppaal variant of CTL
= state formulae: describes individual states in 7 (ta)

= path formulae: describes properties of paths in 7 (ta)

10/32

Expressing properties: Uppaal

State formulae

V :=tal | g | 2. | deadlock | not W | W or W | W and ¥ | V imply W

Any expression which can be evaluated to a boolean value for a state (typically involving the
used for guards and invariants and similar constraints over integer

variables):
x >= 8,1 ==8and x < 2, ...
Additionally,
= ta.l which tests :(n) E tat

provided (¢,7) is a state in T (ta)

= deadlock: (£,n) |= Vgcp; - there is no transition from (£, + d)

11/32

Exercises

Lamp

y<5
press?

bright

y:=0

Ex. 2.4: Write a state formula
1. The lamp is low
2. Not off and y > 25

3. If it is low or bright, then y < 3600
12/32

Expressing properties: Uppaal

Path formulae
Na=ADW | AOW | EOW | EOV | &~ W

where

= A, E quantify (universally and existentially, resp.) over paths

. quantify (universally and existentially, resp.) over

also notice that
O~ WAL (0 = AO W)

13/32

Expressing properties: Uppaal

14/32

Expressing properties: Uppaal

Example
If a message is sent, it will eventually be received — send(m) ~~ received(m)

15/32

Reachability properties

EQ ¢
Is there a path starting at the initial state, such that a state formula ¢ is eventually satisfied?
= Often used to perform sanity checks on a model:

= s it possible for a sender to send a message?

= can a message possibly be received?

= Do not by themselves guarantee the correctness of the protocol (i.e. that any message is
eventually delivered), but they validate the basic behavior of the model.

16/32

Safety properties

AQ ¢ and EO 6

Something bad will never happen
or something bad will possibly never happen

Examples

= In a nuclear power plant the temperature of the core is always (invariantly) under a
certain threshold.

= In a game a safe state is one in which we can still win, ie, will possibly not loose.

In Uppaal these properties are formulated positively: something good is invariantly true.

17/32

Liveness properties

AQ ¢ and ¢ ~ ¢

Something good will eventually happen
or if something happens, then something else will eventually happen!

Examples
= When pressing the on button, then eventually the television should turn on.

= |n a communication protocol, any message that has been sent should eventually be

received.

18/32

Exercise: worker, hammer, nail - revisited

Worker
z>=10
done!
et @O@;@j@ Ex. 2.5: Write properties and explain them
go!
z:=0
1. Using EO
H
— 2. Using EOJ
y>=5
free SO busy 3. Using A0
oo, |
907 4. Using ACJ
x:=0, y:=0
5. Using ~~
Nail
(next? W (Practice in UPPAAL)
O——+0—++—0
up half done

19/32

Exercise: write formulas

Lamp
press?
O y>=5 @B y<5
press? press?
off low bright
ress?
y:=0

Ex. 2.6: Write formulas, and say which ones are true
The lamp can become bright;

The lamp will eventually become bright;

The lamp can never be on for more than 3600s;

It is possible to never turn on the lamp;

Whenever the light is bright, the clock y is non-zero;
20/32

en @l > W o =

Whenever the light is bright, it will eventually become off.

Examples: proving mutual exclusion

The train gate example (1/2)

Train(id)

Safe @

apprlid]!
x=0

Appr
x<=20

x<=10
stopl[id]?

X>=3
id!

leavel[id]! Cross
X<=5
x>=7
x=0
Start
x<=15

golid]?
x=0

Stop

(Train 0 can reach the cross)

(Train 0 can be crossing bridge while Train 1 is waiting
to cross)

(Train 0 can cross bridge while the other trains are

waiting to cross)

21/32

The train gate example (1/2)

Train(id)

X>=3
leavel[id]!

Safe @

apprlid]!
x=0
x>=7
x=0
Appr Start
x<=20 x<=15

x<=10
stopl[id]?

golid]?
x=0

Stop

E<> Train(0).Cross
(Train 0 can reach the cross)

E<> Train(0).Cross and Train(1l).Stop
(Train 0 can be crossing bridge while Train 1 is waiting
to cross)

E<> Train(0).Cross and
(forall (i:id-t)
i !=0 imply Train(i).Stop)
(Train 0 can cross bridge while the other trains are
waiting to cross)

21/32

The train gate example (2/2)

Train(id)

Safe @

apprlid]!
x=0

Appr
x<=20

x<=10
stopl[id]?

X>=3
leavel[id]!

golid]?
x=0

Stop

There can never be N elements in the queue

There is never more than one train crossing the bridge

Whenever a train approaches the bridge, it will
eventually cross

The system is deadlock-free

22/32

The train gate example (2/2)

Train(id) = A[] Gate.list[N] ==

s There can never be N elements in the queue
X>=

leavel[id]!

Safe @

CVOSS = A[] forall (i:id-t) forall (j:id-t)
Train(i).Cross && Train(j).Cross imply i == j

apprlid]!
x=0 There is never more than one train crossing the bridge
x>=7
x=0 = Train(1l).Appr -> Train(1l).Cross
Appr Start Whenever a train approaches the bridge, it will
x<=20 x<= 15
eventually cross
x<=10 golid]? = A[] not deadlock
stopl[id]? x=0 .
The system is deadlock-free
Stop

22/32

Mutual exclusion

Properties
= mutual exclusion: no two processes are in their critical sections at the same time

= deadlock freedom: if some process is trying to access its critical section, then eventually
some process (not necessarily the same) will be in its critical section; similarly for exiting

the critical section

23/32

Mutual exclusion

The Problem

Dijkstra's original asynchronous algorithm (1965) requires, for n processes to be
controlled, O(n) read-write registers and O(n) operations.

This result is a theoretical limit (proved by Lynch and Shavit in 1992) which compromises

scalability.

24/32

Mutual exclusion

The Problem

= Dijkstra’s original asynchronous algorithm (1965) requires, for n processes to be
controlled, O(n) read-write registers and O(n) operations.

= This result is a theoretical limit (proved by Lynch and Shavit in 1992) which compromises

scalability.

but it can be overcome by introducing specific timing constraints‘

Two timed algorithms:

= Fisher's protocol (included in the UPPAAL distribution)

= Lamport's protocol

24/32

Fisher’s algorithm

The algorithm

repeat
repeat
await id =0
id =i
delay(k)
until id =i
(critical section)
id:=0

forever

25/32

Fisher’s algorithm

Comments
= One shared read/write register (the variable id)
= Behaviour depends crucially on the value for k — the time delay

= Constant k should be larger than the longest time that a process may take to perform a

step while trying to get access to its critical section

= This choice guarantees that whenever process i finds id = i on testing the loop guard it
can enter safely ist critical section: all other processes are out of the loop or with their
index in id overwritten by /.

26/32

Fisher’s algorithm in Uppaal

Fisher

s x>k && id==pid wait

= Each process uses a local clock x to guarantee that the upper bound between between its
successive steps, while trying to access the critical section, is k (cf. invariant in state req).

= |nvariant in state req establishes k as such an upper bound

= Guard in transition from wait to cs ensures the correct delay before entering the critical

section
27/32

Fisher’s algorithm in Uppaal

Properties

% P(1) requests access => it will eventually wait

P(1).req — P(1).wait

% the algorithm is deadlock—free

A[] not deadlock

% mutual exclusion invariant

A[] forall (i:int[1,6]) forall (j:int[1,6])
P(i).cs & P(j).cs imply i == j

= The algorithm is
= |t ensures mutual exclusion if the correct timing constraints.
= ... but it is critically sensible to small violations of such constraints: for example, replacing

x > k by x > k in the transition leading to cs compromises both and
28/32

Lamport’s algorithm

The algorithm

start: a:= 1
if b # 0 then goto start
b:=i
if a # i then delay(k)
else if b # i then goto start
(critical section)
b:=0

29/32

Lamport’s algorithm

Comments
= Two shared read/write registers (variables a and b)

= Avoids forced waiting when no other processes are requiring access to their critical sections

30/32

Lamport’s algorithm in Uppaal

Lamport(pid)

req

:)!—::-clal< b=pid,x=10

wait3

31/32

Lamport’s algorithm

Model time constants: Experiments

= k — time delay k | kvr | kcs | verified?

Mutual Exclusion | 4 1 1 Yes

= kvr — max bound for register Mutual Exclusion | 2 1 1 Yes

access Mutual Exclusion | 1 | 1 | 1 No

= kcs — max bound for permanence No deadlock 41 1 1 Yes

in critical section No deadlock 2 1 1 Yes

No deadlock 1 1 1 Yes

Typically |k > kvr + kcs

32/32

	Behavioural Equivalences
	Behavioural Properties
	Examples: proving mutual exclusion

