
2. Real-time models: Verifying Timed Automata

David Pereira José Proença Eduardo Tovar
FVOCA 2021/2022
Formal Verification of Critical Applications

CISTER – ISEP
Porto, Portugal

https://cister-labs.github.io/fvoca2122

https://cister-labs.github.io/fvoca2122

Behavioural Equivalences

Traces

Definition
A timed trace over a timed LTS is a (finite or infinite) sequence ⟨t1, a1⟩, ⟨t2, a2⟩, · · · in
R+

0 × Act such that there exists a path

⟨ℓ0, η0⟩ d1−→ ⟨ℓ0, η1⟩ a1−→ ⟨ℓ1, η2⟩ d2−→ ⟨ℓ1, η3⟩ a2−→ · · ·

such that
ti = ti−1 + di

with t0 = 0 and, for all clock x , η0 x = 0.

Intuitively, each ti is an absolute time value acting as a time-stamp.
Warning
All results from now on are given over an arbitrary timed LTS; they naturally apply to T (ta)
for any timed automata ta. 2/32

Traces

Ex. 2.1: Write 4 possible timed traces
Lamp LampLamp

3/32

Traces

Given a timed trace tc, the corresponding
untimed trace is (π2)ω tc.

Definition

• two states s1 and s2 of a timed LTS are
timed-language equivalent if the set of
finite timed traces of s1 and s2 coincide;

• ... similar definition for
untimed-language equivalent ...

Ex. 2.2: Why?
LEQ LEQLEQ EQ EQEQ

are not timed-language equivalent

4/32

Bisimulation

Timed bisimulation (between states of timed LTS)
A relation R is a timed simulation iff whenever s1Rs2, for any action a and delay d ,

s1
a−→ s ′

1 ⇒ there is a transition s2
a−→ s ′

2 ∧ s ′
1Rs ′

2

s1
d−→ s ′

1 ⇒ there is a transition s2
d−→ s ′

2 ∧ s ′
1Rs ′

2

And a timed bisimulation if its converse is also a timed simulation.

5/32

Bisimulation

Example
W1-Z1 W1-Z1W1-Z1

W1 bisimilar to Z1?

⟨⟨W 1, {x 7→ 0}⟩, ⟨Z1, {x 7→ 0}⟩⟩ ∈ R

where
R = {⟨⟨W 1, {x 7→ d}⟩ , ⟨Z1, {x 7→ d}⟩⟩ | d ∈ R+

0 } ∪
{⟨⟨W 2, {x 7→ d + 1}⟩ , ⟨Z2, {x 7→ d}⟩⟩ | d ∈ R+

0 } ∪
{⟨⟨W 3, {x 7→ d}⟩ , ⟨Z3, {x 7→ e}⟩⟩ | d , e ∈ R+

0 }

6/32

Bisimulation

Example
W1-Z1 W1-Z1W1-Z1

W1 bisimilar to Z1?

⟨⟨W 1, {x 7→ 0}⟩, ⟨Z1, {x 7→ 0}⟩⟩ ∈ R

where
R = {⟨⟨W 1, {x 7→ d}⟩ , ⟨Z1, {x 7→ d}⟩⟩ | d ∈ R+

0 } ∪
{⟨⟨W 2, {x 7→ d + 1}⟩ , ⟨Z2, {x 7→ d}⟩⟩ | d ∈ R+

0 } ∪
{⟨⟨W 3, {x 7→ d}⟩ , ⟨Z3, {x 7→ e}⟩⟩ | d , e ∈ R+

0 } 6/32

Untimed Bisimulation

Untimed bisimulation
A relation R is an untimed simulation iff whenever s1Rs2, for any action a and delay t,

s1
a−→ s ′

1 ⇒ there is a transition s2
a−→ s ′

2 ∧ s ′
1Rs ′

2

s1
d−→ s ′

1 ⇒ there is a transition s2
d′

−→ s ′
2 ∧ s ′

1Rs ′
2

And it is an untimed bisimulation if its converse is also an untimed simulation.

Alternatively, it can be defined over a modified LTS in which all delays are abstracted on a
unique, special transition labelled by ϵ.

7/32

Untimed Bisimulation

Ex. 2.3: W1 bisimilar to Z1?

⟨⟨W 1, {x 7→ 0}⟩, ⟨Z1, {x 7→ 0}⟩⟩ ∈ R

where
R = {⟨⟨W 1, {x 7→ d}⟩ , ⟨Z1, {x 7→ d ′}⟩⟩ | 0 ≤ d ≤ 1, 0 ≤ d ′ ≤ 2} ∪

. . .

8/32

Untimed Bisimulation

Ex. 2.3: W1 bisimilar to Z1?

⟨⟨W 1, {x 7→ 0}⟩, ⟨Z1, {x 7→ 0}⟩⟩ ∈ R

where
R = {⟨⟨W 1, {x 7→ d}⟩ , ⟨Z1, {x 7→ d ′}⟩⟩ | 0 ≤ d ≤ 1, 0 ≤ d ′ ≤ 2} ∪

. . .

8/32

Behavioural Properties

Properties: expression and satisfaction

The satisfaction problem
Given a timed automata, ta, and a property, ϕ, show that

T (ta) |= ϕ

• in which logic language shall ϕ be specified?

• how is |= defined?

9/32

Properties: expression and satisfaction

The satisfaction problem
Given a timed automata, ta, and a property, ϕ, show that

T (ta) |= ϕ

• in which logic language shall ϕ be specified?

• how is |= defined?

9/32

Expressing properties: Uppaal

Uppaal variant of CTL

• state formulae: describes individual states in T (ta)

• path formulae: describes properties of paths in T (ta)

10/32

Expressing properties: Uppaal

State formulae
Ψ ::= ta.ℓ | gc | gd | deadlock | not Ψ | Ψ or Ψ | Ψ and Ψ | Ψ imply Ψ

Any expression which can be evaluated to a boolean value for a state (typically involving the
clock constraints used for guards and invariants and similar constraints over integer
variables):

x >= 8, i == 8 and x < 2, ...

Additionally,

• ta.ℓ which tests current location: (ℓ, η) |= ta.ℓ
provided (ℓ, η) is a state in T (ta)

• deadlock: (ℓ, η) |= ∀d∈R+
0
. there is no transition from ⟨ℓ, η + d⟩

11/32

Exercises

Lamp LampLamp

Ex. 2.4: Write a state formula
1. The lamp is low

2. Not off and y > 25
3. If it is low or bright, then y ≤ 3600

12/32

Expressing properties: Uppaal

Path formulae

Π ::= A□Ψ | A♢Ψ | E□Ψ | E♢Ψ | Φ⇝ Ψ

where

• A, E quantify (universally and existentially, resp.) over paths

• □, ♢ quantify (universally and existentially, resp.) over states in a path

also notice that

Φ⇝ Ψ abv= A□ (Φ ⇒ A♢Ψ)

13/32

Expressing properties: Uppaal

A□φA□φA□φ A♢φA♢φA♢φ E□φE□φE□φ E♢φE♢φE♢φ

14/32

Expressing properties: Uppaal

φ ⇝ ψ φ ⇝ ψφ ⇝ ψ

Example
If a message is sent, it will eventually be received – send(m)⇝ received(m)

15/32

Reachability properties

E♢ϕ
Is there a path starting at the initial state, such that a state formula ϕ is eventually satisfied?

• Often used to perform sanity checks on a model:

• is it possible for a sender to send a message?
• can a message possibly be received?
• ...

• Do not by themselves guarantee the correctness of the protocol (i.e. that any message is
eventually delivered), but they validate the basic behavior of the model.

16/32

Safety properties

A□ϕ and E□ϕ

Something bad will never happen
or something bad will possibly never happen

Examples

• In a nuclear power plant the temperature of the core is always (invariantly) under a
certain threshold.

• In a game a safe state is one in which we can still win, ie, will possibly not loose.

In Uppaal these properties are formulated positively: something good is invariantly true.

17/32

Liveness properties

A♢ϕ and ϕ ⇝ ψ

Something good will eventually happen
or if something happens, then something else will eventually happen!

Examples

• When pressing the on button, then eventually the television should turn on.

• In a communication protocol, any message that has been sent should eventually be
received.

18/32

Exercise: worker, hammer, nail - revisited

Worker WorkerWorker

HammerHammerHammer

Nail NailNail

Ex. 2.5: Write properties and explain them

1. Using E♢

2. Using E□

3. Using A♢

4. Using A□

5. Using ⇝

(Practice in UPPAAL)

19/32

Exercise: write formulas

Lamp LampLamp

Ex. 2.6: Write formulas, and say which ones are true
1. The lamp can become bright;
2. The lamp will eventually become bright;
3. The lamp can never be on for more than 3600s;
4. It is possible to never turn on the lamp;
5. Whenever the light is bright, the clock y is non-zero;
6. Whenever the light is bright, it will eventually become off. 20/32

Examples: proving mutual exclusion

The train gate example (1/2)

Train(id) Train(id)Train(id)

• E<> Train(0).Cross

(Train 0 can reach the cross)

• E<> Train(0).Cross and Train(1).Stop

(Train 0 can be crossing bridge while Train 1 is waiting
to cross)

• E<> Train(0).Cross and

(forall (i:id-t)

i != 0 imply Train(i).Stop)

(Train 0 can cross bridge while the other trains are
waiting to cross)

21/32

The train gate example (1/2)

Train(id) Train(id)Train(id) • E<> Train(0).Cross

(Train 0 can reach the cross)

• E<> Train(0).Cross and Train(1).Stop

(Train 0 can be crossing bridge while Train 1 is waiting
to cross)

• E<> Train(0).Cross and

(forall (i:id-t)

i != 0 imply Train(i).Stop)

(Train 0 can cross bridge while the other trains are
waiting to cross)

21/32

The train gate example (2/2)

Train(id) Train(id)Train(id)

• A[] Gate.list[N] == 0

There can never be N elements in the queue

• A[] forall (i:id-t) forall (j:id-t)

Train(i).Cross && Train(j).Cross imply i == j

There is never more than one train crossing the bridge

• Train(1).Appr -> Train(1).Cross

Whenever a train approaches the bridge, it will
eventually cross

• A[] not deadlock

The system is deadlock-free

22/32

The train gate example (2/2)

Train(id) Train(id)Train(id) • A[] Gate.list[N] == 0

There can never be N elements in the queue

• A[] forall (i:id-t) forall (j:id-t)

Train(i).Cross && Train(j).Cross imply i == j

There is never more than one train crossing the bridge

• Train(1).Appr -> Train(1).Cross

Whenever a train approaches the bridge, it will
eventually cross

• A[] not deadlock

The system is deadlock-free

22/32

Mutual exclusion

Properties

• mutual exclusion: no two processes are in their critical sections at the same time

• deadlock freedom: if some process is trying to access its critical section, then eventually
some process (not necessarily the same) will be in its critical section; similarly for exiting
the critical section

23/32

Mutual exclusion

The Problem

• Dijkstra’s original asynchronous algorithm (1965) requires, for n processes to be
controlled, O(n) read-write registers and O(n) operations.

• This result is a theoretical limit (proved by Lynch and Shavit in 1992) which compromises
scalability.

but it can be overcome by introducing specific timing constraints

Two timed algorithms:

• Fisher’s protocol (included in the Uppaal distribution)

• Lamport’s protocol

24/32

Mutual exclusion

The Problem

• Dijkstra’s original asynchronous algorithm (1965) requires, for n processes to be
controlled, O(n) read-write registers and O(n) operations.

• This result is a theoretical limit (proved by Lynch and Shavit in 1992) which compromises
scalability.

but it can be overcome by introducing specific timing constraints

Two timed algorithms:

• Fisher’s protocol (included in the Uppaal distribution)

• Lamport’s protocol

24/32

Fisher’s algorithm

The algorithm

repeat
repeat

await id = 0
id := i
delay(k)

until id = i
(critical section)
id := 0

forever

25/32

Fisher’s algorithm

Comments

• One shared read/write register (the variable id)

• Behaviour depends crucially on the value for k — the time delay

• Constant k should be larger than the longest time that a process may take to perform a
step while trying to get access to its critical section

• This choice guarantees that whenever process i finds id = i on testing the loop guard it
can enter safely ist critical section: all other processes are out of the loop or with their
index in id overwritten by i .

26/32

Fisher’s algorithm in Uppaal

Fisher FisherFisher

• Each process uses a local clock x to guarantee that the upper bound between between its
successive steps, while trying to access the critical section, is k (cf. invariant in state req).

• Invariant in state req establishes k as such an upper bound
• Guard in transition from wait to cs ensures the correct delay before entering the critical

section
27/32

Fisher’s algorithm in Uppaal

Properties

% P(1) requests access => it will eventually wait
P(1).req → P(1).wait

% the algorithm is deadlock−free
A[] not deadlock

% mutual exclusion invariant
A[] forall (i:int[1,6]) forall (j:int[1,6])

P(i).cs && P(j).cs imply i == j

• The algorithm is deadlock-free
• It ensures mutual exclusion if the correct timing constraints.
• ... but it is critically sensible to small violations of such constraints: for example, replacing

x > k by x ≥ k in the transition leading to cs compromises both mutual exclusion and
liveness. 28/32

Lamport’s algorithm

The algorithm

start : a := i
if b ̸= 0 then goto start
b := i
if a ̸= i then delay(k)

else if b ̸= i then goto start
(critical section)
b := 0

29/32

Lamport’s algorithm

Comments

• Two shared read/write registers (variables a and b)

• Avoids forced waiting when no other processes are requiring access to their critical sections

30/32

Lamport’s algorithm in Uppaal

Lamport(pid) Lamport(pid)Lamport(pid)

31/32

Lamport’s algorithm

Model time constants:

• k — time delay

• kvr — max bound for register
access

• kcs — max bound for permanence
in critical section

Typically k ≥ kvr + kcs

Experiments
k kvr kcs verified?

Mutual Exclusion 4 1 1 Yes
Mutual Exclusion 2 1 1 Yes
Mutual Exclusion 1 1 1 No
No deadlock 4 1 1 Yes
No deadlock 2 1 1 Yes
No deadlock 1 1 1 Yes

32/32

	Behavioural Equivalences
	Behavioural Properties
	Examples: proving mutual exclusion

