
Part 2: Implementation of a Simple Program Verifier using Hoare
Logic

José Proença & David Pereira & Eduardo Tovar
{pro,drp,emt}@isep.ipp.pt

Formal Verification of Critical Applications – 2021/2022

To do
The objective of this second project of FVOCA is that each group of students completes the
implementation of a very simple program verified based on Hoare logic, that uses the Z3 theorem
prover to discharge proof obligations.

What to submit
Each group must send, via email to drp@isep.ipp.pt, the two Python files that contain the
functions that are required to be implemented. They are WPrec.py and VCs.py.

Require Software
In terms of required software, you need to have any version of Python 3.10 installed in your
system (or accessible via the IDE or code editor of your choice). Also, the colorama package
is required for pretty printing only. In case you have difficulties installing any of the mentioned
software, please contact drp@isep.ipp.pt at your earliest convenience.

Deadline
12 June @ 23h59m

1 Objectives
As announced in the classes, the objective for each group is to complete the implementation of
two functions that are incomplete in the distributed Python code available at https://github.com/

cister-labs/hoare_project, and that serves as code base for this project. These incomplete functions
are:

1. wprec: the function that implements the generation of weakest preconditions. Its code is available
in the file WPrec.py.

2. VC: the function that implements the generation of verification conditions. Its code is available
in the file VCs.py.

1

AExpr

AEVal

+ value() : int

AEVar

+ name() : str

AEPlus

+left() : AExpr
+right() : AExpr

AEMinus

+left() : AExpr
+right() : AExpr

AEPow

+base() : AExpr
+exp() : AExpr

AEMult

+left() : AExpr
+right() : AExpr

Figure 1: Arithmetic expressions class hierarchy.

To implement these functions, you should follow their algorithmic definitions as presented in the
slides used during the classes and also read and understand how the improved verification generation
function has been implemented (the function is named VC_i and can be found on file VCs.py).

The specifications of the two functions for the groups to complete are presented later on on this
document. But, before that, we will provide an high-level description of the parts of the code base to
ease its understanding.

1.1 Class Hierarchy for Arithmetic and Boolean Expressions, Specifications, and Com-
mands

The implementation that is going to be used considers the simple imperative language introduced in
the classes. As we have seen before, the syntax of that language, to which we call IMP, is implemented
via a class hierarchy defined in the file Exprs.py. The diagram presented in Fig. 1 shows the defined
hierarchy for the case of arithmetic expressions.

In terms of usage, if we want, for instance, to represent the arithmetic expression 2 × (x + y2), we
have to write the following Python code:

x = AEMult(AEVal(2),AEPlus(AEVar(’x’),AEPow(AEvar(’y’),AEVal(2))))

The class that implements constructs related to multiplication and that used to build the above expres-
sion is derived from parent class named AExpr (which is empty and serves just the purpose of allowing
to build the class hierarchy for arithmetic expressions).

’’’ Parent class for remaining arithmetic expressions cases’’’
class AExpr:

pass

’’’ Class that represents the multiplication of two arithmetic expressions.’’’

2

class AEMult(AExpr):

def __init__(self,l,r):
if not (isinstance(l,AExpr) or isinstance(r,AExpr)):

raise AExpr_Exception
self.__rnode = r
self.__lnode = l

def left(self):
return self.__lnode

def right(self):
return self.__rnode

def __eq__(self,other):
match other:

case AEMult():
return (self.__lnode == other.left() and self.__rnode == other.right())

def __str__(self):
return ’(’+str(self.__lnode)+’*’+str(self.__rnode)+’)’

The code is quite compact and simple. It consists of a constructor __init__ that takes arguments l and
r that refer to the left and right subexpression (that must be a particular subclass of the Expr class).
Both subexpressions can be accessed via the methods named left and right, respectively. The other
methods, namely __eq__ and __str__ are responsible for comparing and pretty-printing the contents of
the class, respectively.

The same type of hierarchy was implemented for Boolean expressions (??). In the case of speci-
fications, those reflect the same structure of Boolean expressions, and the code is available in the file
Specs.py. Similarly, the class hierarchy for the command’s language is implemented in the file Imp.py.
The class diagrams for each of these class hierarchies is presented, for your convenience, in the end of
this document.

1.2 The VC_i function: reference function for completing the assignment

We will now look into the VC_i function, available in file VCs.py, and that implements the improved
verification condition generation algorithm introduced in the classes. We present its Python code here
to help your task of implementing the functions announced above.

First, we recall the algorithmic specification of the function:

V C(skip, Q) = ∅
V C(x := e, Q) = ∅
V C(C1; C2, Q) = V C(C1, wprec(C2, Q)) ∪ V C(C2, Q)

V C(if B then C1 else C2, Q) = V C(C1, Q) ∪ V C(C2, Q)
V C(while B do {I} C, Q) = {(I ∧ B) → wprec(C, I)} ∪ V C(C, I)

{(I ∧ ¬B) → Q}

V CG({P} C {Q}) = {P → wprec(C, Q)} ∪ V C(C, Q)

3

And now we look into the implemented code of the VC_i function:

def VC_i(p,pst):
match p:

case Skip():
Case: V C(skip, Q) = ∅
return set()

case Assgn():
Case: V C(x := e, Q) = ∅
return set()

case Seq():
Case: V C(C1; C2, Q) = V C(C1, wprec(C2, Q)) ∪ V C(C2, Q)
l = VC_i(p.left(),wprec(p.right(),pst))
r = VC_i(p.right(),pst)
return l.union(r)

case IfThen():
Case: V C(if B then C1 else C2, Q) = V C(C1, Q) ∪ V C(C2, Q)
l = VC_i(p.left(),pst)
r = VC_i(p.right(),pst)
return l.union(r)

case While():
Case: V C(while B do {I} C, Q) = {(I ∧ B) → wprec(C, I)} ∪ V C(C, I) ∪ {(I ∧ ¬B) → Q}
i = { SImp(SAnd(p.inv(),bexpr2spec(p.cond())),wprec(p.body(),p.inv())) }
j = { SImp(SAnd(p.inv(),SNeg(bexpr2spec(p.cond()))),pst) }
r = VC_i(p.body(),p.inv())
return i.union(j.union(r))

Note that the several lines starting with "# Case:" refers to comments that we are added here (not
in the original Python file) just to make clear how the code tries to replicate what is defined at the
algorithmic level of the function. This function is part of a larger function named VCG, thus mimicking
what has been defined in the algorithmic specification. After some time looking at the produced code, it
is easy to see that the function VC_i follows exactly the structure determined in the specification, that
is: it first tries to understand what kind of object is is processing (via the match and case constructs)
and them implements the corresponding construction of sets.

Note on sets in Python: In Python, mathematical sets are mapped into the primitive type of objects
set. Thus the usage of the set() object construction to build the empty set, or the “{ }” notation to
represent sets of objects. For more information on how to work with sets in Python, please refer to the
following addresses:

• W3Schools: https://www.w3schools.com/python/python_sets.asp

• Programiz: https://www.programiz.com/python-programming/set

• Real Python: https://realpython.com/python-sets/

2 Testing your implementation
To help on the quest for the correct implementation, the code base provided includes unit test files that
will allow to check if what you have implemented is indeed according to what is expected. The files are:

4

• test_Wprec.py: this file contains unit tests that verify in the weakest precondition generation
function is outputting the expected results.

• test_VCs.py: this file contains unit tests that verify in the verification condition generation function
is outputting the expected results.

• test_Z3Driver.py: this file contains unit tests that verify in the interface with the Z3 theorem
prover is outputting the expected results.

The way to use this testing scripts is straightforward, that is, if you have access to a command line,
you simply run the command python test_Wprec.py (and similarly with the remaining testing scripts),
or you can run it directly using the "run" button available in the IDE you are using.

We now look with a bit more of detail to the structure of test_Wprec.py and test_VCs.py. The other
unit testing file can be ignored, as it is not important for the objetives of the project (it is just there
for those who want to install the Z3 theorem prover and see that the prover indeed is able to prove the
correctness of the generated verification conditions generated by your implementation).

Interfacing with the Z3 theorem prover
As mentioned during the classes, the code that is being provided contains an interface with an external
theorem prover so that we indeed can prove if programs are correct with respect to Hoare Triples. The
code for this interface is available in the file Z3Driver.py.

To be able to use this driver, you must install the corresponding Python module. The module is
named Z3Python and can be installed via the Python package manager pip. But you also need to install
the Z3 theorem prover itself in your machine. Please follow the instructions available in the following
websites:

• Windows: https://blog.fearcat.in/a?ID=00950-982838a1-76e1-4402-9312-d3847cb98312

• Mac (using homebrew): https://formulae.brew.sh/formula/z3

• Linux (using Ubuntu): https://www.howtoinstall.me/ubuntu/18-04/z3/

Note that if you are using a Linux distribution that is not Ubuntu, then you should use that distri-
bution’s own package manager (contact drp@isep.ipp.pt in case you find difficulties).

Class Diagrams for Syntax Hierarchies
The class diagram for Boolean expressions is captured in Figure 2 by the class hierarchy presented.

The class diagram presented in Fig. 3 captures the syntax of specifications. Specifications are very
similar to Boolean expressions but they also consider universal and existential quantifiers. In file Spec.py

you can find the code that translates a Boolean expression onto a logically equivalent specification; that
function is named bexp2spec.

5

BExpr

BEVal

+ value() : bool

BENeg

+ inner() : BExpr

BEAnd

+left() : BExpr
+right() : BExpr

BEOr

+left() : BExpr
+right() : BExpr

BEEq

+left() : BExpr
+right() : BExpr

BELt

+left() : BExpr
+right() : BExpr

BELeq

+left() : BExpr
+right() : BExpr

BEGt

+left() : BExpr
+right() : BExpr

BEGeq

+left() : BExpr
+right() : BExpr

Figure 2: Boolean Expressions class hierarchy.

6

Spec

SVal

+ value() : bool

SNeg

+value() : Spec

SAnd

+left() : Spec
+right() : Spec

SOr

+left() : Spec
+right() : Spec

SImp

+left() : Spec
+right() : Spec

SEq

+left() : Spec
+right() : Spec

SLt

+left() : Spec
+right() : Spec

SGt

+left() : Spec
+right() : Spec

SLeq

+left() : Spec
+right() : Spec

SGeq

+left() : Spec
+right() : Spec

SForall

+left() : Spec
+right() : Spec

SExists

+left() : Spec
+right() : Spec

Figure 3: Specifications class hierarchy.

7

