3. Counting steps (Asymptotic analysis)

José Proença
Algorithms (CC4010) 2023/2024
CISTER - U.Porto, Porto, Portugal
https://cister-labs.github.io/alg2324

Overview

- Checking correctness of algorithms
- Measuring precisely performance of algorithms
- Measuring asymptotically performance of algorithms
- Analysing recursive functions
- Next: beyond worst-/best-case scenarios
- average time of a single operation
- analysis of sequences of operations (amortised analysis)

Motivation

slides by Charles E. Leiserson pages 3-19

Analysis of algorithms

The theoretical study of computer-program performance and resource usage.

What's more important than performance?

- modularity
- correctness
- maintainability
- functionality
- robustness
- user-friendliness
- programmer time
- simplicity
- extensibility
- reliability

Why study algorithms and performance?

- Algorithms help us to understand scalability.
- Performance often draws the line between what is feasible and what is impossible.
- Algorithmic mathematics provides a language for talking about program behavior.
- Performance is the currency of computing.
- The lessons of program performance generalize to other computing resources.
- Speed is fun!

Input: sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ of numbers.
Output: permutation $\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle$ such that $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}$.

Example:
Input: 824936
Output: 234689

Insertion sort
"pseudocode" $\left\{\begin{array}{c}\text { Insertion-Sort }(A, n) \quad \triangleright A[1 \ldots n] \\ \text { for } j \leftarrow 2 \text { to } n \\ \text { do } k e y \leftarrow A[j] \\ i \leftarrow j-1 \\ \text { while } i>0 \text { and } A[i]>k e y \\ \text { do } A[i+1] \leftarrow A[i] \\ i \leftarrow i-1 \\ A[i+1]=k e y\end{array}\right.$

Insertion sort

Example of insertion sort

$\begin{array}{llllll}8 & 2 & 4 & 9 & 3 & 6\end{array}$

Example of insertion sort

$4 \quad 9$
3
6

Example of insertion sort

$4 \quad 9$
49 3

6
6

Example of insertion sort

6 9 36

Example of insertion sort

Example of insertion sort

Example of insertion sort

Example of insertion sort

Example of insertion sort

Example of insertion sort

Running time

- The running time depends on the input: an already sorted sequence is easier to sort.
- Parameterize the running time by the size of the input, since short sequences are easier to sort than long ones.
- Generally, we seek upper bounds on the running time, because everybody likes a guarantee.

slides by Pedro Ribeiro, slides 2

pages 1-2

Asymptotic Analysis

Pedro Ribeiro

DCC/FCUP

2018/2019

Motivational Example - TSP

Traveling Salesman Problem (Euclidean TSP version)

Input: a set S of n points in the plane
Output: the smallest possible path that starts on a point, visits all other points of S and then returns to the starting point.

An example:

slides by Pedro Ribeiro, slides 2

pages 8-18

Motivational Example - TSP

How to solve the problem then?
A possible algorithm (exhaustive search a.k.a. "brute force")
$P_{\text {min }} \leftarrow$ any permutation of the points in S
For $P_{i} \leftarrow$ each of the permutations of points in S
If $\left(\operatorname{cost}\left(P_{i}\right)<\operatorname{cost}\left(P_{\text {min }}\right)\right)$ then $P_{\text {min }} \leftarrow P_{i}$
retorn Path formed by $P_{\text {min }}$

A correct algorithm, but extremely slow!

- $P(n)=n!=n \times(n-1) \times \ldots \times 1$
- For instance, $P(20)=2,432,902,008,176,640,000$
- For a set of 20 points, even the fastest computer in the world would not solve it! (how long would it take?)

Motivational Example - TSP

- The present problem is a restricted version (euclidean) of one of the most well known "classic" hard problems, the Travelling Salesman Problem (TSP)
- This problem has many possible applications

Ex: genomic analysis, industrial production, vehicle routing, ...

- There is no known efficient solution for this problem (with optimal results, not just approximated)
- The presented solution has $\mathcal{O}(n!)$ complexity The Held-Karp algorithm has $\mathcal{O}\left(2^{n} n^{2}\right)$ complexity (this notation will be the focus of this class)
- TSP belongs to the class of NP-hard problems

The decision version belongs to the class of NP-complete problems (we will also talk about this at the end of the semester)

An experience - how many instructions

- How many instructions per second on a current computer? (just an approximation, an order of magnitude)

On my notebook, about 10^{9} instructions

- At this velocity, how much time for the following quantities of instructions?

Quant.	$\mathbf{1 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{1 0 0 0 0}$
N	$<0.01 s$	$<0.01 s$	$<0.01 s$
N^{2}	$<0.01 \mathrm{~s}$	$<0.01 \mathrm{~s}$	0.1 s
N^{3}	$<0.01 \mathrm{~s}$	1.00 s	16 min
N^{4}	0.1 s	16 min	115 days
2^{N}	10^{13} years	10^{284} years	10^{2993} years
$n!$	10^{141} years	10^{2551} years	10^{35642} years

An experience: - Permutations

- Let's go back to the idea of permutations

Exemple: the 6 permutations of $\{1,2,3\}$
123
132
213
231
312
321

- Recall that the number of permutations can be computed as:
$P(n)=n!=n \times(n-1) \times \ldots \times 1$
(do you understand the intuition on the formula?)

An experience: - Permutations

- What is the execution time of a program that goes through all permutations?
(the following times are approximated, on my notebook) (what I want to show is order of growth)
$\mathbf{n} \leq \mathbf{7}:<0.001$ s
$\mathbf{n}=8: 0.001$ s
$\mathbf{n}=\mathbf{9}: 0.016 \mathrm{~s}$
$\mathbf{n}=10: 0.185 \mathrm{~s}$
n = 11: 2.204 s
n = 12: 28.460 s
$\mathbf{n}=\mathbf{2 0}: 5000$ years !

How many permutations per second?
About 10^{7}

On computer speed

- Will a faster computer be of any help? No! If $n=20 \rightarrow 5000$ years, hypothetically:
- 10x faster would still take 500 years
- $5,000 \times$ would still take 1 year
- $1,000,000 x$ faster would still take two days, but $n=21$ would take more than a month $n=22$ would take more than a year!
- The growth rate of the execution time is what matters!

Algorithmic performance vs Computer speed

A better algorithm on a slower computer will always win against a worst algorithm on a faster computer, for sufficiently large instances

Why worry?

- What can we do with execution time/memory analysis?

Prediction

How much time/space does an algorithm need to solve a problem? How does it scale? Can we provide guarantees on its running time/memory?

Comparison

Is an algorithm A better than an algorithm B ? Fundamentally, what is the best we can possibly do on a certain problem?

- We will study a methodology to answer these questions
- We will focus mainly on execution time analysis

Random Access Machine (RAM)

- We need a model that is generic and independent from the language and the machine.
- We will consider a Random Access Machine (RAM)
- Each simple operation (ex:,,$+- \leftarrow$, If) takes 1 step
- Loops and procedures, for example, are not simple instructions!
- Each access to memory takes also $\mathbf{1}$ step
- We can measure execution time by... counting the number of steps as a function of the input size n : $T(n)$.
- Operations are simplified, but this is useful Ex: summing two integers does not cost the same as dividing two reals, but we will see that on a global vision, these specific values are not important

Random Access Machine (RAM)

A counting example

A simple program

```
int count = 0;
for (int i=0; i<n; i++)
    if (v[i] == 0) count++
```

Let's count the number of simple operations:

Variable declarations	2
Assignments:	2
"Less than" comparisons	$n+1$
"Equality" comparisons:	n
Array access	n
Increment	between n and $2 n$

Random Access Machine (RAM)

A counting example

A simple program

```
int count = 0;
for (int i=0; i<n; i++)
    if (v[i] == 0) count++
```

Total number of steps on the worst case:
$T(n)=2+2+(n+1)+n+n+2 n=5+5 n$

Total number of steps on the best case:
$T(n)=2+2+(n+1)+n+n+n=5+4 n$

Types of algorithm analysis

Worst Case analysis: (the most common)

- $T(n)=$ maximum amount of time for any input of size n

Average Case analysis: (sometimes)

- $T(n)=$ average time on all inputs of size n
- Implies knowing the statistical distribution of the inputs

Best Case analysis: ("deceiving")

- It's almost like "cheating" with an algorithm that is fast just for some of the inputs

Next steps

1. Precise analysis: counting operations
2. Approximate analysis - Asymptotic notation $(O, \Theta, \Omega, o, \omega)$

Counting operations

Simpler counting

```
int count = 0;
for (int i=0; i<n; i++)
    if (v[i] == 0) count++
```


RAM

- worst-case: $T(n)=5+5 n$
- best-case: $T(n)=5+4 n$

\#array-accesses + \#count-increments

- worst-case: $T(n)=2 n$
- best-case: $T(n)=n$
- average-case:

$$
\bar{T}(n)=n+\sum_{0 \leq r<n} P(v[r]=0)
$$

Exercises

```
void bubbleSort(int v[], int N){
    int i, j;
    for (i=N-1; i>0; i--)
        for (j=0; j<i; j++)
            if (v[j] > v[j+1])
            swap (v, j, j+1);
}
```

```
void iSort(int v[], int N){
    int i, j;
    for (i=1; i<N; i++)
        for (j=i; j>0 && v[j-1]>v[j];
            j--)
        swap(v,j,j-1);
}
```

Ex.3.1: What is the best and worst case wrt comparisons between array elements?

Ex. 3.2: What is the best and worst case wrt swaps?

Ex.3.3: How many of these operations are performed in both cases?

Exercises

```
int mult1 (int x, int y){
    int a, b, r;
    a=x; b=y; r=0;
    while (a!=0){
        r = r+b;
        a = a-1;
    }
    return r;
}
```

```
int mult2 (int x, int y){
    int a, b, r;
    a=x; b=y; r=0;
    while (a!=0) {
        if (a%2 == 1) r = r+b;
        a=a/2;
        b=b*2;
    return r;
}
```

Ex.3.4: In each case, how many primitive operations (+ - *2 / $2 \% 2$) are performed in the worst case?

Note: In mult2, consider the size N as the number of bits used to represent x and y ; e.g., with 5 bits you can represent a positive integer until 31 .

Exercises

```
int maxgrow(int v[], int N) {
    int r = 1, i = 0, m;
    while (i<N-1) {
        m = grow(v+i, N-i);
        if (m>r) r = m;
        i++;
    }
    return r;
}
```

```
int grow(int v[], int N) {
    int i;
    for (i=1; i<N; i++)
        if (v[i] < v[i-1]) break;
    return i;
}
```

Ex.3.5: What is the best and worst case for maxgrow wrt comparisons of array elements?

Ex. 3.6: How many comparisons are in each case?
Ex.3.7: If we replace i++ by $i+=m$, how many comparisons are in the worst case?

Exercises @home

```
int maxSum(int v[], int N) {
    int i, j, r=0, m;
    for (i=0; i<N; i++)
        for (j=i; j<N; j++) {
            m = sum(v,i,j);
            if (m>r) r = m;
        }
    return r;
}
```

```
int sum(int v[], int a, int b) {
    int r = 0, i;
    for (i=a; i<=b; i++)
        r=r+v[i];
    return r;
}
```

Ex.3.8: What is the complexity maxSum wrt accesses to the array?

Asymptotic Notation

slides by Pedro Ribeiro, slides 2

pages 19-23

Types of algorithm analysis

Asymptotic Notation

We need a mathematical tool to compare functions
On algorithm analysis we use Asymptotic Analysis:

- "Mathematically": studying the behaviour of limits (as $n \rightarrow \infty$)
- Computer Science: studying the behaviour for arbitrary large input or
"describing" growth rate
- A very specific notation is used: $O, \Omega, \Theta, o, \omega$
- It allows to focus on orders of growth

Asymptotic Notation

Definitions

$$
\mathbf{f}(\mathbf{n})=\mathcal{O}(\mathbf{g}(\mathbf{n}))
$$

It means that $c \times g(n)$ is an upper bound of $f(n)$
$\mathbf{f}(\mathbf{n})=\boldsymbol{\Omega}(\mathbf{g}(\mathbf{n}))$
It means that $c \times g(n)$ is a lower bound of $f(n)$

$$
\mathbf{f}(\mathbf{n})=\boldsymbol{\Theta}(\mathbf{g}(\mathbf{n}))
$$

It means that $c_{1} \times g(n)$ is a lower bound of $f(n)$ and $c_{2} \times g(n)$ is an upper bound of $f(n)$

Note: \in could be used instead of $=$

Asymptotic Notation

A graphical depiction
$\boldsymbol{\Theta}$

\mathcal{O}
Ω

The definitions imply an n from which the function is bounded. The small values of n do not "matter".

Asymptotic Notation

Formalization

- $\mathbf{f}(\mathbf{n})=\mathcal{O}(\mathbf{g}(\mathbf{n}))$ if there exist positive constants n_{0} and c such that $f(n) \leq c \times g(n)$ for all $n \geq n_{0}$
- $\mathbf{f}(\mathbf{n})=\boldsymbol{\Omega}(\mathbf{g}(\mathbf{n}))$ if there exist positive constants n_{0} and c such that $f(n) \geq c \times g(n)$ for all $n \geq n_{0}$
- $\mathbf{f}(\mathbf{n})=\boldsymbol{\Theta}(\mathbf{g}(\mathbf{n}))$ if there exist positive constants n_{0}, c_{1} and $c 2$ such that $c_{1} \times g(n) \leq f(n) \leq c_{2} \times g(n)$ for all $n \geq n_{0}$
- $\mathbf{f}(\mathbf{n})=\mathbf{o}(\mathbf{g}(\mathbf{n}))$ if for any positive constant c there exists n_{0} such that $f(n)<c \times g(n)$ for all $n \geq n_{0}$
- $\mathbf{f}(\mathbf{n})=\omega(\mathbf{g}(\mathbf{n}))$ if for any positive constant c there exists n_{0} such that $f(n)>c \times g(n)$ for all $n \geq n_{0}$

Examples

Big Oh (O)

$$
\begin{aligned}
& 3 n^{2}-100 n+6=? \mathcal{O}\left(n^{2}\right) \\
& 3 n^{2}-100 n+6=? \mathcal{O}\left(n^{3}\right) \\
& 3 n^{2}-100 n+6=? \mathcal{O}(n)
\end{aligned}
$$

Big Omega (Ω)

$$
\begin{aligned}
& 3 n^{2}-100 n+6=? \Omega\left(n^{2}\right) \\
& 3 n^{2}-100 n+6=? \Omega\left(n^{3}\right) \\
& 3 n^{2}-100 n+6=? \Omega(n)
\end{aligned}
$$

Big Theta (Θ)

$$
\begin{aligned}
3 n^{2}-100 n+6 & =? \Theta\left(n^{2}\right) \\
3 n^{2}-100 n+6 & =? \Theta\left(n^{3}\right) \\
3 n^{2}-100 n+6 & =? \Theta(n)
\end{aligned}
$$

Examples

Big Oh (O)

$$
\begin{array}{ll}
3 n^{2}-100 n+6=\mathcal{O}\left(n^{2}\right) \quad \text { because } 3 n^{2}>3 n^{2}-100 n+6 \\
3 n^{2}-100 n+6=\mathcal{O}\left(n^{3}\right) \quad \text { because } 0.01 n^{3}>3 n^{2}-100 n+6 \\
3 n^{2}-100 n+6 \neq \mathcal{O}(n) \quad \text { because } c \cdot n<3 n^{2} \quad \text { when } n>c
\end{array}
$$

Big Omega (Ω)

$$
\begin{aligned}
& 3 n^{2}-100 n+6=? \Omega\left(n^{2}\right) \\
& 3 n^{2}-100 n+6=? \Omega\left(n^{3}\right) \\
& 3 n^{2}-100 n+6=? \Omega(n)
\end{aligned}
$$

Big Theta (Θ)

$$
\begin{aligned}
& 3 n^{2}-100 n+6=? \Theta\left(n^{2}\right) \\
& 3 n^{2}-100 n+6=? \Theta\left(n^{3}\right) \\
& 3 n^{2}-100 n+6=? \Theta(n)
\end{aligned}
$$

Examples

Big Oh (O)

$$
\begin{array}{lll}
3 n^{2}-100 n+6=\mathcal{O}\left(n^{2}\right) & \text { because } 3 n^{2}>3 n^{2}-100 n+6 \\
3 n^{2}-100 n+6=\mathcal{O}\left(n^{3}\right) & \text { because } & 0.01 n^{3}>3 n^{2}-100 n+6 \\
3 n^{2}-100 n+6 \neq \mathcal{O}(n) & \text { because } & c \cdot n<3 n^{2} \quad \text { when } n>c
\end{array}
$$

Big Omega (Ω)

$$
\begin{array}{ll}
3 n^{2}-100 n+6=\Omega\left(n^{2}\right) & \text { because } 2.99 n^{2}<3 n^{2}-100 n+6 \\
3 n^{2}-100 n+6 \neq \Omega\left(n^{3}\right) & \text { because } c \cdot n^{3}>3 n^{2}-100 n+6 \\
3 n^{2}-100 n+6=\Omega(n) & \text { because } 10^{10^{10}} n<3 n^{2}-100+6
\end{array} \text { for any } c>0
$$

Big Theta (Θ)

$$
\begin{aligned}
& 3 n^{2}-100 n+6=? \Theta\left(n^{2}\right) \\
& 3 n^{2}-100 n+6=? \Theta\left(n^{3}\right) \\
& 3 n^{2}-100 n+6=? \Theta(n)
\end{aligned}
$$

Examples

Big Oh (O)

$$
\begin{array}{lll}
3 n^{2}-100 n+6=\mathcal{O}\left(n^{2}\right) & \text { because } & 3 n^{2}>3 n^{2}-100 n+6 \\
3 n^{2}-100 n+6=\mathcal{O}\left(n^{3}\right) & \text { because } & 0.01 n^{3}>3 n^{2}-100 n+6 \\
3 n^{2}-100 n+6 \neq \mathcal{O}(n) & \text { because } & c \cdot n<3 n^{2} \quad \text { when } n>c
\end{array}
$$

Big Omega (Ω)

$$
\begin{array}{ll}
3 n^{2}-100 n+6=\Omega\left(n^{2}\right) & \text { because } 2.99 n^{2}<3 n^{2}-100 n+6 \\
3 n^{2}-100 n+6 \neq \Omega\left(n^{3}\right) & \text { because } c \cdot n^{3}>3 n^{2}-100 n+6 \\
3 n^{2}-100 n+6=\Omega(n) & \text { because } 10^{10^{10}} n<3 n^{2}-100+6
\end{array} \text { for any } c>0
$$

Big Theta (Θ)

$$
\begin{array}{ll}
3 n^{2}-100 n+6=\Theta\left(n^{2}\right) & \text { because } \mathcal{O} \text { and } \Omega \\
3 n^{2}-100 n+6 \neq \Theta\left(n^{3}\right) & \text { because } \mathcal{O} \text { only } \\
3 n^{2}-100 n+6 \neq \Theta(n) & \text { because } \Omega \text { only }
\end{array}
$$

slides by Pedro Ribeiro, slides 2

pages 24-31

Asymptotic Notation

Analogy

Comparison between two functions f and g and two numbers a and b :

$$
\begin{array}{lll|l|l}
f(n)=\mathcal{O}(g(n)) & \text { is like } & a \leq b & \text { upper bound } & \text { at least as good as } \\
f(n)=\Omega(g(n)) & \text { is like } & a \geq b & \text { lower bound } & \text { at least as bad as } \\
f(n)=\boldsymbol{\Theta}(g(n)) & \text { is like } & a=b & \text { tight bound } & \text { as good as } \\
f(n)=\mathbf{o}(g(n)) & \text { is like } & a<b & \text { strict upper b. } & \text { strictly better than } \\
f(n)=\omega(g(n)) & \text { is like } & a>b & \text { strict lower b. } & \text { strictly worst than }
\end{array}
$$

Asymptotic Notation

- $f(n)=\boldsymbol{\Theta}(g(n)) \rightarrow f(n)=\mathcal{O}(g(n))$ and $f(n)=\boldsymbol{\Omega}(g(n))$
- $f(n)=\mathcal{O}(g(n)) \rightarrow f(n) \neq \omega(g(n))$
- $f(n)=\boldsymbol{\Omega}(g(n)) \rightarrow f(n) \neq \mathbf{o}(g(n))$
- $f(n)=\mathbf{o}(g(n)) \rightarrow f(n) \neq \boldsymbol{\Omega}(g(n))$
- $f(n)=\omega(g(n)) \rightarrow f(n) \neq \mathcal{O}(g(n))$
- $f(n)=\boldsymbol{\Theta}(g(n)) \rightarrow g(n)=\boldsymbol{\Theta}(f(n))$
- $f(n)=\mathcal{O}(g(n)) \rightarrow g(n)=\boldsymbol{\Omega}(f(n))$
- $f(n)=\Omega(g(n)) \rightarrow g(n)=\mathcal{O}(f(n))$
- $f(n)=\mathbf{o}(g(n)) \rightarrow g(n)=\omega(f(n))$
- $f(n)=\omega(g(n)) \rightarrow g(n)=\mathbf{o}(f(n))$

Asymptotic Notation

A few practical rules

- Multiplying by a constant does not affect:

$$
\Theta(c \times f(n))=\Theta(f(n))
$$

$$
99 \times n^{2}=\Theta\left(n^{2}\right)
$$

- On a polynomial of the form $a_{x} n^{x}+a_{x-1} n^{x-1}+\ldots+a_{2} n^{2}+a_{1} n+a_{0}$ we can focus on the term with the largest exponent:

$$
\begin{aligned}
& 3 \mathbf{n}^{\mathbf{3}}-5 n^{2}+100=\Theta\left(n^{3}\right) \\
& 6 \mathbf{n}^{4}-20^{2}=\Theta\left(n^{4}\right) \\
& 0.8 \mathbf{n}+224=\Theta(n)
\end{aligned}
$$

- More than that, on a sum we can focus on the dominant term:

$$
\begin{aligned}
& 2^{\mathbf{n}}+6 n^{3}=\Theta\left(2^{n}\right) \\
& \mathbf{n}!-3 n^{2}=\Theta(n!) \\
& n \log n+3 \mathbf{n}^{2}=\Theta\left(n^{2}\right)
\end{aligned}
$$

Asymptotic Notation

Dominance

When is a function better than another?

- If we want to minimize time, "smaller" functions are better
- A function dominates another if as n grows it keeps getting larger
- Mathematically: $f(n) \gg g(n)$ if $\lim _{n \rightarrow \infty} g(n) / f(n)=0$

Dominance Relations

$n!\gg 2^{n} \gg n^{3} \gg n^{2} \gg n \log n \gg n \gg \log n \gg 1$

Asymptotic Growth

A practical view

If an operation takes 10^{-9} seconds...

	$\log n$	n	$n \log n$	n^{2}	n^{3}	2^{n}	$n!$
10	$<0.01 s$						
20	$<0.01 s$	77 years					
30	$<0.01 s$	$1.07 s$					
40	$<0.01 s$	18.3 min					
50	$<0.01 s$	13 days					
100	$<0.01 s$	$10^{13} y e a r s$					
10^{3}	$<0.01 s$	$<0.01 s$	$<0.01 s$	$<0.01 s$	$1 s$		
10^{4}	$<0.01 s$	$<0.01 s$	$<0.01 s$	0.1 s	16.7 min		
10^{5}	$<0.01 s$	$<0.01 s$	$<0.01 s$	$10 s$	11 days		
10^{6}	$<0.01 s$	$<0.01 s$	$0.02 s$	16.7 min	31 years		
10^{7}	$<0.01 s$	$0.01 s$	$0.23 s$	1.16 days			
10^{8}	$<0.01 s$	$0.1 s$	$2.66 s$	115 days			
10^{9}	$<0.01 s$	$1 s$	$29.9 s$	31 years			

Asymptotic Notation

Common Functions

Function	Name	Examples
1	constant	summing two numbers
$\log n$	logarithmic	binary search, inserting in a heap
n	linear	1 loop to find maximum value
$n \log n$	linearithmic	sorting (ex: mergesort, heapsort)
n^{2}	quadratic	2 loops (ex: verifying, bubblesort)
n^{3}	cubic	3 loops (ex: Floyd-Warshall)
2^{n}	exponential	exhaustive search (ex: subsets)
$n!$	factorial	all permutations

Asymptotic Growth

Drawing functions

An useful program for drawing functions is gnuplot.

```
(comparing 2n with 100n}\mp@subsup{n}{}{2}\mathrm{ for 1 
gnuplot> plot [1:70] 2*x**3, 100*x**2
gnuplot> set logscale xy 10
gnuplot> plot [1:10000] 2*x**3, 100*x**2
```


(which grows faster: \sqrt{n} or $\log _{2} n$?)
gnuplot> plot [1:1000000] sqrt(x), $\log (x) / \log (2)$

Asymptotic Analysis

A few more examples

- A program has two pieces of code A and B, executed one after the other, with A running in $\Theta(n \log n)$ and B in $\Theta\left(n^{2}\right)$.
The program runs in $\Theta\left(n^{2}\right)$, because $n^{2} \gg n \log n$
- A program calls n times a function $\Theta(\log n)$, and then it calls again n times another function $\Theta(\log n)$
The program runs in $\Theta(n \log n)$
- A program has 5 loops, all called sequentially, each one of them running in $\Theta(n)$
The program runs in $\Theta(n)$
- A program P_{1} has execution time proportional to $100 \times n \log n$.

Another program P_{2} runs in $2 \times n^{2}$.
Which one is more efficient?
P_{1} is more efficient because $n^{2} \gg n \log n$. However, for a small n, P_{2} is quicker and it might make sense to have a program that calls P_{1} or P_{2} depending on n.

slides by Pedro Ribeiro, exercises 2

 pages 1-2Exercises \#2
Asymptotic Analysis

Theoretical Background

Remember the asymptotic notation:

- $\mathbf{f}(\mathbf{n})=\mathbf{O}(\mathbf{g}(\mathbf{n}))$ if there exist positive constants n_{0} and c such that $f(n) \leq c g(n)$ for all $n \geq n_{0}$.
- $\mathbf{f}(\mathbf{n})=\boldsymbol{\Omega}(\mathbf{g}(\mathbf{n}))$ if there exist pasitive constants n_{0} and c such that $f(n) \geq c g(n)$ for all $n \geq n_{0}$.
- $\mathbf{f (n)}=\boldsymbol{\Theta}(\mathbf{g}(\mathbf{n}))$ if there exist positive constants n_{0}, c_{1} and c_{2} such that $c_{1} g(n) \leq f(n) \leq c_{2} g(n)$ for all $n \geq n_{0}$.
- $\mathbf{f}(\mathbf{n})=\mathbf{o}(\mathbf{g}(\mathbf{n}))$ if for any positive constant c there exists n_{0} such that $f(n)<\operatorname{cg}(n)$ for all $n \geq n_{0}$.
- $\mathbf{f}(\mathbf{n})=\omega(\mathbf{g}(\mathbf{n}))$ if for any positive constant c there exists n_{0} such that $f(n)>c g(n)$ for all $n \geq n_{0}$.

Asymptotic Notation

1. Is $2^{n+1}=O\left(2^{n}\right)$? Is $2^{2 n}=O\left(2^{n}\right)$. Justify your answer with brief proofs.
2. For each pair of functions $f(n)$ and $g(n)$, indicate whether $f(n)$ is O, o, Ω, w, or Θ of $g(n)$. Your answer should be in the form of a "yes" or "no" for each cell of the table.

3. For each of the following conjectures, indicate if they are true or false, explaining why

You can assume that functions $f(n)$ and $g(n)$ are asymptotically positive, i.e., they are positive from some point on $\left(\exists n_{0}: f(n)>0\right.$ for all $\left.n \geq n_{0}\right)$
(a) $f(n)=O(g(n))$ implies that $g(n)=O(f(n))$
(b) $f(n)=O(g(n))$ implies that $g(n)=\Omega(f(n))$
(c) $f(n)+g(n)=\Theta(\min (f(n), g(n)))$
(d) $f(n)+g(n)=\Theta(\max (f(n), g(n)))$
(e) $(n+c)^{k}=\Theta\left(n^{k}\right)$, where c and k are positive integer constants
(f) $f(n)+o(f(n))=\Theta(f(n))$
(g) $n^{2}=\Theta\left(16^{\log _{4} n}\right)$

Growth Ratio
4. Imagine a program A running with time complexity $\Theta(f(n))$, taking t seconds for an input of size k. What would your estimation be for the execution time for an input of size $2 k$ for the following functions: $n, n^{2}, n^{3}, 2^{n}, \log _{2} n$. Is this growth ratio constant for any k or is it changing?
5. Consider two programs implementing algorithms A and B, both trying to solve the same problem for an input of size n. They measured the execution times for test cases of different sizes and got the following table:

Algorithm	$n=100$	$n=200$	$n=300$	$n=400$	$n=500$
A	0.003 s	0.024 s	0.081 s	0.192 s	0.375 s

${ }_{B}$	0.003 s	0.0245	0.0101 s	0.192 s	0.377 s
${ }_{B}$	0.040 s	0.160 s	0.361 s	0.640 s	1.000 s

(a) Which program is more efficient? Why?
(b) Could you produce a program that uses both algorithms in order to produce an algorithm C that would be at least as good as A and B for any test case?

Analysis of recursive functions

Binary search

To analyse the complexity of a recursive function, we typically define the time T using recurrence relations.

```
int bsearch(int x, int v[], int N){
    // pre: v is sorted
    int i;
    if ( }N<=0) i = -1; 
    else {
        m = N/2;
        if (v[m]==x) i = m;
        else if (v[m] > x)
            i = bsearch(x, v, m);
        else {
            i = bsearch(x, v+m+1, N-m-1);
            if (i!=-1) i = i+m+1
        }
    return i ;
}
```

Counting the number of comparisons with array elements:

$$
T(N)= \begin{cases}0 & \text { if } N=0 \\ T(N / 2)+2 & \text { if } N>0\end{cases}
$$

Binary search

To analyse the complexity of a recursive function, we typically define the time T using recurrence relations.

```
int bsearch(int x, int v[], int N){
    // pre: v is sorted
    int i;
    if (N<=O) i = -1;
    else {
        m = N/2;
        if (v[m]==x) i = m;
        else if (v[m] > x)
            i = bsearch(x, v, m);
        else {
            i = bsearch(x, v+m+1, N-m-1);
                if (i!=-1) i = i+m+1
        }
    return i ;
}
```


Binary search

To analyse the complexity of a recursive function, we typically define the time T using recurrence relations.

```
int bsearch(int x, int v[], int N){
    // pre: v is sorted
    int i;
    if (N<=O) i = -1;
    else {
        m = N/2;
        if (v[m]==x) i = m;
        else if (v[m] > x)
            i = bsearch(x, v, m);
        else {
                i = bsearch(x, v+m+1, N-m-1);
                if (i!=-1) i = i+m+1
        }
    return i ;
}
```

$$
\begin{aligned}
&(T(\mathrm{~N})=\mathrm{T}(\mathrm{~N} / 2)+2 \text { if } \mathrm{N}>0) \\
& T(0)=0 \\
& T(1)=T\left(2^{0}\right)=2 \\
& T(2)=T\left(2^{1}\right)=2+T(2 / 2)=2+2=4 \\
& T(4)=T\left(2^{2}\right)=2+T(4 / 2)=2+2+2=6 \\
& \ldots \\
& T\left(2^{i}\right)=\underbrace{2+2+\cdots+2}_{\text {i-times }}+2=2 i+2 \\
& T(N)=T\left(2^{\log _{2}(N)}\right) \\
&=2 * \log _{2}(N)+2 \quad(=\Theta(\log (N)))
\end{aligned}
$$

slides by Pedro Ribeiro, slides 2

pages $38-60$

Divide and Conquer

We are often interested in algorithms that are expressed in a recursive way
Many of these algorithms follow the divide and conquer strategy:

Divide and Conquer

Divide the problem in a set of subproblems which are smaller instances of the same problem

Conquer the subproblems solving them recursively. If the problem is small enough, solve it directly.

Combine the solutions of the smaller subproblems on a solution for the original problem

Divide and Conquer

MergeSort

We now describe the MergeSort algorithm for sorting an array of size n

MergeSort

Divide: partition the initial array in two halves
Conquer: recursively sort each half. If we only have one number, it is sorted.

Combine: merge the two sorted halves in a final sorted array

Divide and Conquer

MergeSort

Divide:

Divide and Conquer

MergeSort
Conquer:

Divide and Conquer

MergeSort

What is the execution time of this algorithm?

- $\mathbf{D}(\mathbf{n})$ - Time to partition an array of size n in two halves
- $\mathbf{M}(\mathbf{n})$ - Time to merge two sorted arrays of size n
- $\mathbf{T}(\mathbf{n})$ - Time for a MergeSort on an array of size n

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ D(n)+2 T(n / 2)+M(n) & \text { if } n>1\end{cases}
$$

In practice, we are ignoring certain details, but it suffices (ex: when n is odd, the size of subproblem is not exactly $n / 2$)

Divide and Conquer

MergeSort
$\mathbf{D}(\mathbf{n})$ - Time to partition an array of size n in two halves

We can do it in constant time! $\Theta(1)$
mergesort (a,b): (sort from position a to b)
In the beginning, call mergesort ($0, \mathrm{n}-1$)
Let $m=\lfloor(a+b) / 2\rfloor$ (middle position)
Call mergesort (a, m) and mergesort ($m+1, b$)

Divide and Conquer

MergeSort
$\mathbf{M}(\mathbf{n})$ - Time to merge two sorted arrays of size n

We can do it in linear time! $\boldsymbol{\Theta}(\mathbf{n})$ (2n comparisons)

Divide and Conquer

MergeSort

Back to the mergesort recurrence:

- $\mathbf{D}(\mathbf{n})$ - Time to partition an array of size n in two halves
- $\mathbf{M}(\mathbf{n})$ - Time to merge two sorted arrays of size n
- $\mathbf{T}(\mathbf{n})$ - Time for a MergeSort on an array of size n

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ D(n)+2 T(n / 2)+M(n) & \text { if } n>1\end{cases}
$$

becomes
$T(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ 2 T(n / 2)+\Theta(n) & \text { if } n>1\end{cases}$

Recurrences

Technicalities

For sufficiently small inputs, an algorithm generally takes constant time.
This means that for a small n, we have $T(n)=\Theta(1)$
For convenience, we can can generally omit the boundary condition of the recurrence.

Examples:

- Mergesort: $T(n)=2 T(n / 2)+\Theta(n)$
- Binary Search: $T(n)=T(n / 2)+\Theta(1)$
- Finding Maximum with tail recursion: $T(n)=T(n-1)+\Theta(1)$

How to solve recurrences like this?

Recurrences

Solving

We are going to talk about 4 methods:

- Unrolling: unroll the recurrence to obtain an expression (ex: summation) you can work with
- Substitution: guess the answer and prove by induction
- Recursion Tree: draw a tree representing the recursion and sum all the work done in the nodes
- Master Theorem: If the recurrence is of the form $\mathbf{a T}(\mathbf{n} / \mathbf{b})+\mathbf{c n}^{\mathbf{k}}$, the answer follows a certain pattern

Solving Recurrences

Unrolling Method

Some recurrences can be solved by unrolling them to get a summation:
$T(n)=T(n-1)+\Theta(n)=\Theta(n)+\Theta(n-1)+\Theta(n-2)+\ldots+\Theta(1)$
$T(n)=T(n-1)+c n=c n+c(n-1)+c(n-2)+\ldots+c$
There are n terms and each one is at most $c n$, so the summation is at most $c n^{2}$.

Similarly, since the first $n / 2$ terms are each at least $c n / 2$, this summation is at least $(n / 2)(c n / 2)=c n^{2} / 4$.
Given this, the recurrence is $\Theta\left(n^{2}\right)$.
We could have also used arithmetic progressions:

$$
T(n)=c[n+(n-1)+\ldots+c]=c \frac{(n+c) n}{2}=c n^{2}+c^{2} n / 2
$$

Recurrences

Substitution method

Another possible method is to make a guess and then prove the guess correctness using induction

- "Strong" vs "Weak" induction
- With weak induction we assume it is valid for n and then we prove $n+1$
- With strong induction we assume it is valid for all $n_{0}<n$ and we prove it for n.
- There are two "main" ways to use the substitution method:
- We have an exact guess, with no "unknowns" (ex: $3 n^{2}-n$)
- We only have an idea of the class it belongs to $\left(\mathrm{ex}: c n^{2}\right)$
- How to prove that some $f(n)$ is $\Theta(g(n))$?
- If we have an exact formula, just use it
- Else, it may be "easier" to separately prove O and Ω
\star Ex: to prove O we can show it is less than c.g(n)
\star Ex: to prove Ω we can show it is more than c.g(n)

Recurrences

Substitution method
"Prove that $\mathbf{T}(\mathbf{n})=\mathbf{T}(\mathbf{n}-1)+\mathbf{n}$ is $\Theta\left(\mathbf{n}^{2}\right)$ "
Can we have an exact guess?
Let's assume $T(1)=1$

$$
\begin{aligned}
T(n) & =T(n-1)+n \\
& =T(n-2)+(n-1)+n \\
& =T(n-3)+(n-2)+(n-1)+n \\
& =1+2+3+\ldots+(n-1)+n \\
& =\frac{(n+1) n}{2}(\text { An arithmetic progression) }
\end{aligned}
$$

Recurrences

Substitution method
"Prove that $\mathbf{T}(\mathbf{n})=\mathbf{T}(\mathbf{n}-1)+\mathbf{n}$ is $\Theta\left(n^{2}\right)$ "
Our (exact) guess is $\frac{(\mathbf{n}+\mathbf{1}) \mathbf{n}}{\mathbf{2}}$
Now, let's try to prove by substituting.
Assuming it is true for $n-1$:

$$
\begin{aligned}
T(n) & =T(n-1)+n \\
& =\frac{n(n-1)}{2}+n \\
& =\frac{n^{2}-n}{2^{2}}+n \\
& =\frac{n^{2}-n+2 n}{2} \\
& =\frac{n^{2}+n}{2} \\
& =\frac{(n+1) n}{2} \quad \square \text { (An we have proved our guess!) }
\end{aligned}
$$

Recurrences

Substitution method

"Prove that $\mathbf{T}(\mathbf{n})=\mathbf{T}(\mathbf{n} / \mathbf{2})+\mathbf{1}$ is $\boldsymbol{\Theta}\left(\log _{2} \mathbf{n}\right)$ "

And if we don't have an exact guess?
Let's try to prove that $\mathbf{T}(\mathbf{n})=\mathcal{O}\left(\log _{2} \mathbf{n}\right)$
We basically need to prove that $T(n) \leq c \log _{2} n$, with $n \geq n_{0}$, for a correct choice of c and n_{0}.

Let's assume $T(1)=0$ and $T(2)=1$. For these base cases:

- $T(1) \leq c \log _{2} 1$ for any c, because $\log _{2} 1=0$
- $T(2) \leq c \log _{2} 2$ is true as long as $c \geq 1$.

Now, assuming it is true for all $n^{\prime}<n$:

$$
\begin{aligned}
T(n) & \leq c \log _{2}(n / 2)+1 \\
& =c\left(\log _{2} n-\log _{2} 2\right)+1 \\
& =c \log _{2} n-c+1 \\
& \leq c \log _{2} n, \text { as long as } c \geq 1 \quad \square\left(\text { We proved } \mathbf{T}(\mathbf{n})=\mathcal{O}\left(\log _{2} \mathbf{n}\right)\right)
\end{aligned}
$$

Recurrences

Substitution method

"Prove that $\mathbf{T}(\mathbf{n})=\mathbf{T}(\mathbf{n} / \mathbf{2})+\mathbf{1}$ is $\Theta\left(\log _{2} n\right)$ "
Let's try to prove that $\mathbf{T}(\mathbf{n})=\boldsymbol{\Omega}\left(\log _{2} \mathbf{n}\right)$
We basically need to prove that $T(n) \geq c \log _{2} n$, with $n \geq n_{0}$, for a correct choice of c and n_{0}.
Let's assume $T(1)=0$ and $T(2)=1$. For these base cases:

- $T(1) \geq c \log _{2} 1$ for any c, because $\log _{2} 1=0$
- $T(2) \geq c \log _{2} 2$ is true as long as $c \leq 1$.

Now, assuming it is true for all $n^{\prime}<n$:

$$
\begin{aligned}
T(n) & \geq c \log _{2}(n / 2)+1 \\
& =c\left(\log _{2} n-\log _{2} 2\right)+1 \\
& =c \log _{2} n-c+1 \\
& \geq c \log _{2} n, \text { as long as } c \leq 1 \quad \square\left(\text { We proved } \mathbf{T}(\mathbf{n})=\Omega\left(\log _{2} \mathbf{n}\right)\right) \\
T(n)= & \left.\left.\mathcal{O}\left(\log _{2} n\right)\right) \text { and } T(n)=\Omega\left(\log _{2} n\right) \rightarrow \mathbf{T}(\mathbf{n})=\boldsymbol{\Theta}\left(\log _{2} \mathbf{n}\right)\right)
\end{aligned}
$$

Solving Recurrences

Substitution Method

If the guess is wrong, often we will gain clues for a better guess.
Recurrence to solve: $T(n)=4 T(n / 4)+n$
Guess \#1: $T(n) \leq c n($ which would mean $T(n)=\mathcal{O}(n))$

Attempt to prove Guess \#1:

If $T(1)=c$, then the base case is true. For the rest of the induction, assuming it is true for $n^{\prime}<n$, we can substitute using $n^{\prime}=n / 4$:

```
    \(T(n) \leq 4(c n / 4)+n\)
        \(=c n+n\)
        \(=(c+1) n \quad\) but \((c+1) n\) is never \(\leq c n\) for a positive \(c\)
        (the guess is wrong!)
We guess that we night need an higher function than simply \(\mathcal{O}(n)\)
```


Solving Recurrences

Substitution Method

Recurrence to solve: $T(n)=4 T(n / 4)+n$
Guess \#2: $T(n) \leq n \log _{4} n$
(I'm proving a more tight bound than simply $\mathrm{cn} \log _{4} n$)

Attempt to prove Guess \#2:

If $T(1)=1$, then the base case is true. For the rest of the induction, assuming it is true for $n^{\prime}<n$, we can substitute using $n^{\prime}=n / 4$:

$$
\begin{aligned}
T(n) & \leq 4\left[(n / 4) \log _{4}(n / 4)\right]+n \\
& =n \log _{4}(n / 4)+n \\
& =n \log _{4}(n)-n+n \\
& =n \log _{4}(n) \quad \square\left[\text { correct guess! In fact, } T(n)=\Theta\left(n \log _{4} n\right)\right]
\end{aligned}
$$

Solving Recurrences

Substitution Method - Subtleties

Sometimes you might correctly guess an asymptotic bound on the solution of a recurrence, but somehow the math fails to work out in the induction.

The problem frequently turns out to be that the inductive assumption is not strong enough to prove the detailed bound. If you revise the guess by subtracting a lower-order term when you hit such a snag, the math often goes through.

Let's observe an example of this:
Recurrence to solve: $T(n)=4 T(n / 2)+n$
As you will see later, $T(n)=\Theta\left(n^{2}\right)$
Let's try to prove that directly.

Solving Recurrences

Substitution Method - Subtleties

Recurrence to solve: $T(n)=4 T(n / 2)+n$
Guess \#1: $T(n) \leq c n^{2}$
Attempt to prove Guess \#1:
If $T(1)=1$, then the base case is true as long as $c \leq 1$.
Now, assuming it is true for $n^{\prime}<n$

$$
\begin{aligned}
T(n) & \leq 4\left[c(n / 2)^{2}\right]+n \\
& =c n^{2}+n \quad\left[\text { which is not } \leq c n^{2} \text { for any positive } n\right]
\end{aligned}
$$

Although the bound is correct, the math does not work out...
We need a tighter bound to form a stronger induction hypothesis.
Let's subtract a lower order-term and try $T(n) \leq c_{1} n^{2}-c_{2} n$

Solving Recurrences

Substitution Method - Subtleties

Recurrence to solve: $T(n)=4 T(n / 2)+n$
Guess \#2: $T(n) \leq c_{1} n^{2}-c_{2} n$
Attempt to prove Guess \#2:
If $T(1)=1$, then the base case is true as long as $c_{1}-c_{2} \leq 1$
Now, assuming it is true for $n^{\prime}<n$

$$
\begin{aligned}
T(n) & \leq 4\left[c_{1}(n / 2)^{2}-c_{2}(n / 2)\right]+n \\
& =c_{1} n^{2}-2 c_{2} n+n \\
& =c_{1} n^{2}-c_{2} n \quad \text { [correct guess!] }
\end{aligned}
$$

Solving Recurrences

Recursion Tree Method

Another method is to draw a recursion tree and analyse it, by summing all the work in the tree nodes.

This method could be also used to get a good guess which we could then prove by induction.

Let us try it out with MergeSort: $T(n)=2(n / 2)+n$
(for a cleaner explanation we will assume $n=2^{k}$,
but the results holds for any n)

Solving Recurrences

Recursion Tree Method

Summing everything we get that MergeSort is $\boldsymbol{\Theta}\left(\mathbf{n} \log _{2} \mathbf{n}\right)$

Exercises

Ex. 3.9: Solve using recursion trees (assume $T(0)$ is a constant)

1. $T(n)=k+T(n-1)$ where k is a constant
2. $T(n)=k+T(n / 2)$ where k is a constant
3. $T(n)=k+2 * T(n / 2)$ where k is a constant
4. $T(n)=n+T(n-1)$
5. $T(n)=n+T(n / 2)$
6. $T(n)=n+2 * T(n / 2)$

Exercises

Ex. 3.10: Write recurrences for maxSumR (wrt array accesses) \& Hanoi (wrt printf)

Ex.3.11: Draw a recurrence tree for Hanoi and use it to derive its asymptotic

 complexity```
int maxSumR (int v[], int N) {
 int r=0, m1, m2, i;
 if (N>0) {
 m1 = m2 = v[0];
 for (i=1; i<N; i++) {
 m2 = m2+v[i];
 if (m2>m1) m1=m2;
 }
 m2 = maxSumR (v+1,N-1);
 if (m1>m2) r = m1; else r = m2;
 }
 return r; }
```


## Exercises

```
int heightBT(BTree t){
 int r=0;
 if (t!=NULL)
 r=1 + max (heightBT(t->left),
 heightBT(t->right));
 return r;
}
```

Ex. 3.12: Recall binary trees; this function calculates the maximum height of a binary tree. Identify the best and worst cases for this function, and describe a recurrence for each one.

# slides by Pedro Ribeiro, slides 2 

pages 61-69

## Solving Recurrences

Master Theorem
We can use the master theorem for recurrences of the following form:
$\mathbf{T}(\mathbf{n})=\mathbf{a} \mathbf{T}(\mathbf{n} / \mathbf{b})+\mathbf{c n}^{\mathbf{k}}$
This is well suited for divide and conquer recurrences and corresponds to an algorithm that divides the problem into a pieces of size $\mathbf{n} / \mathbf{b}$ and takes $\mathbf{c n}^{\mathbf{k}}$ time for partitioning+combining.


$$
\log _{b}(n)
$$

In the mergesort case, $a=2, b=2, k=1$.

## Master Theorem

## Intuition behind it

$$
\mathbf{a T}(\mathbf{n} / \mathbf{b})+\mathbf{n}^{\mathbf{k}} \quad(\mathrm{I} \text { assume } c=1 \text { for a cleaner explanation })
$$



## Master Theorem

## Intuition behind it

- Root (first level): $n^{k}$
- Depth i (intermediate): $a^{i}\left(n / b^{i}\right)^{k}=a^{i} / b^{i k} n^{k}=\left(a / b^{k}\right)^{i} n^{k}$
- Leafs (last level): $a^{\log _{b} n}=n^{\log _{b} a}$

So the weight of depth $i$ is: $\left(\mathbf{a} / \mathbf{b}^{\mathbf{k}}\right)^{\mathbf{i}} \mathbf{n}^{\mathbf{k}}$
(1) $a<b^{k}$ implies that $a / b^{k}$ is lower than $1 \quad$ (weight is shrinking)
(2) $a=b^{k} \quad$ implies that $a / b^{k}$ is equal to $1 \quad$ (weight is constant)
(3) $a>b^{k}$ implies that $a / b^{k}$ is higher than 1 (weight is growing)

- (1) The time is dominated by the top level
- (2) The time is (uniformly) distributed along the recursion tree
- (3) The time is dominated by the last level



## Master Theorem

## Master Theorem - A practical version

A recurrence $\mathbf{a T}(\mathbf{n} / \mathbf{b})+\mathbf{c n}^{\mathbf{k}}(a \geq 1, b>1, c$ and $k$ are constants) solves to:
(1) $T(n)=\Theta\left(n^{k}\right)$ if $a<b^{k}$
(2) $T(n)=\Theta\left(n^{k} \log n\right) \quad$ if $a=b^{k}$
(3) $T(n)=\Theta\left(n^{\log _{b} a}\right) \quad$ if $a>b^{k}$

If you think on the recursion tree, intuitively, these 3 cases correspond to:

- (1) The time is dominated by the top level
- (2) The time is (uniformly) distributed along the recursion tree
- (3) The time is dominated by the last level





## Master Theorem

## Master Theorem - A practical version

A recurrence $\mathbf{a T}(\mathbf{n} / \mathbf{b})+\mathbf{c n}^{\mathbf{k}}$ ( $a \geq 1, b>1, c$ and $k$ are constants) solves to:
(1) $T(n)=\Theta\left(n^{k}\right)$
if $a<b^{k}$
(2) $T(n)=\Theta\left(n^{k} \log n\right) \quad$ if $a=b^{k}$
(3) $T(n)=\Theta\left(n^{\log _{b} a}\right) \quad$ if $a>b^{k}$

## Example of Case (1):

$T(n)=2 T(n / 2)+n^{2}$
$a=2, b=2, k=2, a<b^{k}$ since $2<4$.
The recurrence solves to $\Theta\left(\mathrm{n}^{2}\right)$

## Master Theorem

## Master Theorem - A practical version

A recurrence $\mathbf{a T}(\mathbf{n} / \mathbf{b})+\mathbf{c n}^{\mathbf{k}}$ ( $a \geq 1, b>1, c$ and $k$ are constants) solves to:
(1) $T(n)=\Theta\left(n^{k}\right)$
if $a<b^{k}$
(2) $T(n)=\Theta\left(n^{k} \log n\right) \quad$ if $a=b^{k}$
(3) $T(n)=\Theta\left(n^{\log _{b} a}\right) \quad$ if $a>b^{k}$

## Example of Case (2):

$T(n)=2 T(n / 2)+n(e x:$ mergesort)
$a=2, b=2, k=1, a=b^{k}$ since $2=2$.
The recurrence solves to $\Theta(n \log \mathbf{n})$ (as we already knew).

## Master Theorem

## Master Theorem - A practical version

A recurrence $\mathbf{a T}(\mathbf{n} / \mathbf{b})+\mathbf{c n}^{\mathbf{k}}(a \geq 1, b>1, c$ and $k$ are constants) solves to:
(1) $T(n)=\Theta\left(n^{k}\right)$
if $a<b^{k}$
(2) $T(n)=\Theta\left(n^{k} \log n\right) \quad$ if $a=b^{k}$
(3) $T(n)=\Theta\left(n^{\log _{b} a}\right) \quad$ if $a>b^{k}$

## Example of Case (3):

$T(n)=2 T(n / 2)+1$
$a=2, b=2, k=0, a>b^{k}$ since $2>1$.
The recurrence solves to $\boldsymbol{\Theta}(\mathbf{n})$

## Master Theorem

## Revisiting the examples

Examples:
(1) $T(n)=2 T(n / 2)+n^{2}=\Theta\left(n^{2}\right)$
$n^{2}+n^{2} / 2+n^{2} / 4+\ldots+n \leftarrow\left(n^{2}\right.$ dominates, i.e., the root $)$
(2) $T(n)=2 T(n / 2)+n=\Theta(n \log n)$
$n+n+\ldots+n \leftarrow$ (distributed among all levels)
(3) $T(n)=2 T(n / 2)+1=\Theta(n)$
$1+2+4+\ldots+n \leftarrow(n$ dominates, i.e., the leaf $)$

## Master Theorem

For the sake of completeness, here is the master theorem version presented in the book "Introduction to Algorithms".

## Master Theorem

A more general version $A$ recurrence $\mathbf{a T}(\mathbf{n} / \mathbf{b})+\mathbf{f}(\mathbf{n})(a \geq 1, b>1$ are constants) solves to:
(1) If $f(n)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
(2) If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
(3) If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and if af $(n / b) \leq c f(n)$ for some constant $c<1$ and all sufficiently large $n$, then $T(n)=\Theta(f(n))$
(cases 1 and 3 are inverted in relation to the practical version I've shown)

# slides by Pedro Ribeiro, exercises 3 

## pages 1-2

Exercises \#3 Solving Recurrences

Theoretical Background
4 methods for solving recurrences:

- Unrolling: unroll the recurrence to obtain an expression (ex: summation) you can work with
- Substitution: guess the answer and prove by induction
- Recursion Tree: draw a tree representing the reccursion and sum all the work done in the nodes
- Master Theorem: If the recurrence is of the form $\mathbf{a T}(\mathbf{n} / \mathbf{b})+\mathbf{c n}^{\mathbf{k}}$ (this is one version of the theorem): (1) $T(n)=\Theta\left(n^{k}\right)$

2) $T(n)=\Theta\left(n^{k} \log n\right) \quad$ if $a=b^{k}$ (3) $T(n)=\Theta\left(n^{\left.\log _{4} a\right)} \quad\right.$ if $a>b^{k}$

For the following exercises, assume that $T(n)$ takes constant time for sufficiently small $n$.

1. Solve the following recurrences by unrolling. State the answer using $\theta$ notation.
(a) $T(n)=T(n-2)+1$
(b) $T(n)=T(n-1)+n^{2}$
2. Show that the following conjectures are true by using the substitution method.
(a) $T(n)=T(n-1)+2$ is $\Theta(n)$
(b) $T(n)=2 T(n / 2)+n$ is $\Theta(n \log n)$
3. Draw a recursion tree for the following recurrences and use it to obtain asymptotic bounds as tight as possible.
(a) $T(n)=3 T(n / 2)+n$
(b) $T(n)=T(n / 2)+n^{2}$
4. Solve the following recurrences using the master method:
(a) $T(n)=2 T(n / 4)+1$
(b) $T(n)=2 T(n / 4)+\sqrt{n}$
(c) $T(n)=2 T(n / 4)+n$
(d) $T(n)=2 T(n / 4)+n^{2}$
5. Consider the recurrence $T(n)=8 T(n / 2)+n^{2}$
(a) Use the substitution method to try to prove that $T(n)=O\left(n^{2}\right)$. The proof should fail. Can you understand why?
(b) Use the master method to find the a tight asymptotic bound. Try to prove that bound directly. Does the math work?
(c) Use a stronger induction hypothesis (by subtracting a lower order term) and make a correct proof of that tighter bound.
6. Give asymptotic upper and lower bounds (as tight as possible) for the following recurrences. You can use any method you want.
(a) $T(n)=7 T(n / 3)+n^{2}$
(b) $T(n)=7 T(n / 2)+n^{2}$
(c) $T(n)=2 T(n / 4)+n^{2}$
(d) $T(n)=T(n-2)+n^{3}$
(e) $T(n)=T(n / 2)+T(n / 4)+T(n / 8)+n$
(f) $T(n)=T(n-1)+\frac{1}{n}$
(g) $T(n)=4 T(n / 3)+n \log _{2} n$

## What's next?

## What's next?

## So far:

- Checking correctness of algorithms
- Measuring best/worst performance of algorithms
- Analysing recursive functions


## Next:

- Analysis of the average time execution
- Analysis of sequences of operations (amortised analysis)
- Lower bounds
- Data structures
- Stacks/Queues/PriorityQueues (minHeap)
- Hashtables/AVLs
- Graphs
- Detph/Breathfirst traversals
- Acyclic - topological order
- Transitive closure
- Minimum spanning tree
- Shortest/longest path

