2. Algorithm Correctness

José Proença
Algorithms (CC4010) 2023/2024
CISTER - U.Porto, Porto, Portugal
https://cister-labs.github.io/alg2324

Motivation

slides by Pedro Ribeiro, slides 1

pages 1-5

Correctness and Loop Invariants

Pedro Ribeiro

DCC/FCUP

2018/2019

On Algorithms

What are algorithms? A set of instructions to solve a problem.

- The problem is the motivation for the algorithm
- The instructions need to be executable
- Typically, there are different algorithms for the same problem [how to choose?]
- Representation: description of the instructions that is understandable for the intended audience

 $\rightarrow \infty$ 1 ver

On Algorithms

"Computer" Science version

- An algorithm is a method for solving a (computational) problem
- Algorithms are the ideas behind the programs and are independent from the programming language, the machine, ...
- A problem is characterized by the description of its input and output

A classical example:

Sorting Problem

Input: a sequence of $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ of n numbers
Output: a permutation of the numbers $\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle$ such that $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}$

Example instance for the sorting problem

Input: 637924
Output: 234679

On Algorithms

What do we aim for?

- What properties do we want on an algorithm?

Correction

It has to solve correctly all instances of the problem

Efficiency

The performance (time and memory) has to be adequate

- This course is about designing correct and efficient algorithms and how to prove they meet the specifications

About correction

- In this lecture we will (mostly) worry about correction
- Given an algorithm, it is not often obvious or trivial to know if it is correct, and even less so to prove this.
- By learning how to reason about correctness, we also gain insight into what really makes an algorithm work

Specification

When is an algorithm correct?

Ex. 2.1: What do these functions do?

```
int fa (int x, int y){
    // pre: True
    // pos: (m == x || m == y) &&
    // (m >= x && m >= y)
    return m;
}
```

```
int fb (int x, int y){
    // pre: x >= 0 && y >= 0
    // pos: x % r == 0 && y % r == 0
    return r;
}
```

```
int fc (int x, int y){
    // pre: x > 0 && y > 0
    // pos: r % x == 0 && r % y == 0
    return r;
}
```

```
int fd (int a[], int N){
    // pre: N>0
    // pos:
    // (forall_{0<=i<N} x<=a[i]) &&
    // (exists_{0<=i<N} x==a[i])
    return x;
}
```


When is an algorithm correct?

```
Ex.2.2: Formulate pre- and post-conditions:
    int prod (int x, int y) - product of two integers
    int gcd (int x, int y) - greatest common divisor of 2 positive integers
    int sum (int v[], int N) - sum of elements in an array
    int maxPOrd (int v[], int N) - length of the longest sorted prefix of an array
    int isSorted (int v[], int N) - tests if an array is sorted (growing)
```


Hoare triples

A triple $\{P\} S\{Q\}$ is a valid Hoare triple when

$$
\text { if [} P \text { holds] and [} S \text { is executed] then [} Q \text { holds] }
$$

Ex. 2.3: Find initial states that show these are not valid (and fix pre-cond.)

1. $\{$ True $\} r=x+y ;\{r \geq x\}$
2. $\{$ True $\} x=x+y ; y=x-y ; x=x-y ;\{x==y\}$
3. $\{$ True\} $x=x+y ; y=x-y ; x=x-y ;\{x \neq y\}$
4. $\{$ True $\}$ if $(x>y) ~ r=x-y$; else $r=y-x ;\{r>0\}$
5. $\{$ True\} while $(x>0)\{y=y+1 ; x=x-1 ;\}\{y>x\}$

Partial correctness

Using rules for Hoare triples

$$
\frac{P \Rightarrow Q[x \backslash E]}{\{P\} \times:=E\{Q\}} \quad \frac{P \Rightarrow \mid \quad\{\mid \wedge c\} S\{\mid\} \quad(\mid \wedge \neg c) \Rightarrow Q}{\{P\} \text { while } c S\{Q\}}
$$

1. Initialisation: $P \Rightarrow /$ (P is the precondition right before the cycle) Before the cycle the invariant holds.
2. Maintenance: $\{I \wedge c\} S\{I\} \quad$ (or $I \wedge c \Rightarrow I^{\prime}$, where I^{\prime} is the invariant after S) Assuming the invariant holds before an iteration; it must be valid after it.
3. Termination/Usefulness: $(/ \wedge \neg c) \Rightarrow Q$ (simplify I \wedge c until obtain Q)
After the cycle the post-condition holds.

slides by Pedro Ribeiro, slides 1

pages 6-11

Loops

- We will tackle one of the most fundamental (and most used) algorithmic patterns: a loop (e.g. for or while instructions)

```
Example loop: summing integers from 1 to n
sum = 0
i=1
while (i\leqn) {
    sum = sum + i
    i=i+1
}
```

- We will talk about how to prove that a loop is correct
- We will show how this is also useful for designing new algorithms

Loop Invariants

Definition of Loop Invariant

A condition that is necessarily true immediately before (and immediately after) each iteration of a loop

Note that this says nothing about its truth or falsity part way through an iteration.

Instructions are for computers, invariants are for humans

- The loop program statements are "operational", they are "how to do" instructions
- Invariants are "assertional", capturing "what it means" descriptions

Anatomy of a loop

Consider a simple loop: while (B) $\{\mathbf{S}\}$

- Q: precondition (assumptions at the beginning)
- B: the stop condition (defining when the loop end)
- S: the body of the loop (a set of statements)
- R: postcondition (what we want to be true at the end)

```
sum = 0
i=1
while (i\leqn) {
    sum =sum + i
    i=i+1
}
```

Example loop: summing integers from 1 to n

- Q: sum $=0$ and $i=1$
- B: $i \leq N$
- S: sum $=$ sum $+i$ followed by $i=i+1$
- R: sum $=\sum_{i=1}^{n} i$

The invariant?

- P: an invariant (condition that holds at the start of each iteration)

- To be useful, the invariant P that we seek should be such that: $P \wedge \operatorname{not}(B) \rightarrow R$
- For the example sum loop, it could be: sum $=\sum_{i=1}^{i-1} i$

How to show that an invariant is really one?

- First, show that $Q \rightarrow P$ (truth precondition Q guarantees truth of invariant P)
- For the example sum loop: sum $=0$ which is $=\sum_{i=1}^{0} i$
- If $P \wedge B$, then after executing S, then P holds after executing S (the statements S of the loop guarantee that P is respected)
- For the example sum loop: $\sum_{i=1}^{i-1}+i=\sum_{i=1}^{i}$

How to show that an invariant is really one?

Initialization

The invariant is true prior to the first iteration of the loop

Maintenance

If it is true before an iteration of the loop, it remains true before the next iteration

Termination

When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct

Exercises

```
int mult1 (int x, int y){
    // pre: x>=0
    int a, b, r;
    a=x; b=y; r=0;
    while (a!=0){
        r = r+b;
        a = a-1;
    }
    // pos: r == x * y
    return r;
}
```

```
int mult2 (int x, int y){
    // pre: x>=0
    int a, b, r;
    a=x; b=y; r=0;
    while (a!=0) {
        if (a%2 == 1) r = r+b;
        a=a/2;
        b=b*2;
    // pos: r == x * y
    return r;
}
```

Ex. 2.4: Check if Initialization and Maintenance holds for these formulae
$r==a * b$
$r \geq 0$
$b=0$
$a \geq 0$
$a=x$
$a * b=x * y$
$b \geq 0$
$a \neq x$
$a * b+r==x * y$

Exercises

```
int mult1 (int x, int y){
    // pre: x>=0
    int a, b, r;
    a=x; b=y; r=0;
    while (a!=0){
        r = r+b;
        a = a-1;
    }
    // pos: r == x * y
    return r;
}
```

```
int mult2 (int x, int y){
    // pre: x>=0
    int a, b, r;
    a=x; b=y; r=0;
    while (a!=0) {
        if (a%2 == 1) r = r+b;
        a=a/2;
        b=b*2;
    // pos: r == x * y
    return r;
}
```

Ex. 2.5: Find loop invariants to prove partial correctness

Some intuition - mult1 $(4,5)$

```
int mult1 (int x, int y){
    // pre: x>=0
    int a, b, r;
    a=x; b=y; r=0;
    while (a>0){
        r = r+b;
        a = a-1;
    }
    // pos: r == x * y
    return r;
}
```

line	x	y	a	b	r
4	4	5	4	5	0
6	4	5	4	5	5
7	4	5	3	5	5
6	4	5	3	5	10
7	4	5	2	5	10
6	4	5	2	5	15
7	4	5	1	5	15
6	4	5	1	5	20
7	4	5	0	5	20
10	4	5	0	5	20

Some intuition - mult1 $(4,5)$

```
int mult1 (int x, int y){
    // pre: x>=0
    int a, b, r;
    a=x; b=y; r=0;
    while (a>0){
        r = r+b;
        a = a-1;
    }
    // pos: r == x * y
    return r;
}
```

line	x	y	a	b	r
4	4	5	4	5	0
6	4	5	4	5	5
7	4	5	3	5	5
6	4	5	3	5	10
7	4	5	2	5	10
6	4	5	2	5	15
7	4	5	1	5	15
6	4	5	1	5	20
7	4	5	0	5	20
10	4	5	0	5	20

- x and y never change
- r grows proportionally as a shrinks
- guess:
$I \triangleq a * y+r=x * y$

Some intuition - mult1 $(4,5)$

```
int mult1 (int x, int y){
    // pre: x>=0
    int a, b, r;
    a=x; b=y; r=0;
    while (a>0){
        r = r+b;
        a = a-1;
    }
    // pos: r == x * y
    return r;
}
```

line	x	y	a	b	r
4	4	5	4	5	0
6	4	5	4	5	5
7	4	5	3	5	5
6	4	5	3	5	10
7	4	5	2	5	10
6	4	5	2	5	15
7	4	5	1	5	15
6	4	5	1	5	20
7	4	5	0	5	20
10	4	5	0	5	20

- x and y never change
- r grows proportionally as a shrinks
- guess:
$I \triangleq a * y+r=x * y$
- Need to show:

$$
\begin{aligned}
\mathrm{x}>=0 & \Rightarrow I^{\prime} \\
I \wedge \mathrm{a}>0 & \Rightarrow I^{\prime} \\
I \wedge \neg(\mathrm{a}>0) & \Rightarrow \mathrm{r}=\mathrm{x} * \mathrm{y}
\end{aligned}
$$

Some intuition - mult1 $(4,5)$

```
int mult1 (int x, int y){
    // pre: x>=0
    int a, b, r;
    a=x; b=y; r=0;
    while (a>0){
        r = r+b;
        a = a-1;
    }
    // pos: r == x * y
    return r;
}
```

line	x	y	a	b	r
4	4	5	4	5	0
6	4	5	4	5	5
7	4	5	3	5	5
6	4	5	3	5	10
7	4	5	2	5	10
6	4	5	2	5	15
7	4	5	1	5	15
6	4	5	1	5	20
7	4	5	0	5	20
10	4	5	0	5	20

- x and y never change
- r grows proportionally as a shrinks
- guess:
$I \triangleq a * y+r=x * y$
- Need to show:

$$
\begin{aligned}
\mathrm{x}>=0 & \Rightarrow I^{\prime} \\
I \wedge \mathrm{a}>0 & \Rightarrow I^{\prime} \\
I \wedge \neg(\mathrm{a}>0) & \Rightarrow \mathrm{r}=\mathrm{x} * \mathrm{y}
\end{aligned}
$$

- (Not all works - enrich invariant!)

More exercises

```
int serie(int n){
    // pre: n>=0
    int r=0, i=1;
    // inv: ??
    while (i!=n+1) {
        r = r+i; i = i+1;
    }
    // pos: r == n * (n+1) / 2;
    return r;
}
```

```
int mod(int x, int y) {
    // pre: x>=0 && y>0
    int r = x;
    while (y <= r) {
        r = r-y;
    }
    // pos: 0 <= r< y && exists_{q}
            x == q*y + r
    return r;
}
```

Ex. 2.5: Find loop invariants

Even more exercises (@home)

```
int minInd (int v[], int N) {
    // pre: N>0
    int i = 1, r = 0;
    // inv: ???
    while (i<N) {
        if (v[i] < v[r]) r= i;
        i = i+1; }
    // pos: 0<= r<N && forall_{0<= k<N} v[r]<= v[k]
return r; }
int minimum (int v[], int N) {
    // pre: N>0
    int i = 1, r = v[0]
    // inv: ???
    while (i!=N) {
        if (v[i] < r) r = v[i];
        i=i+1; }
    // pos: (forall_{0 <= k < N} r <= v[k]) &&
    // (exists_{0<= p < N} r == v[p])
    return r;
}
int sum (int v[], int N) {
    // pre: N>0
    int i = 0, r = 0;
    // inv: ???
    while (i!=N) {
        r = r + v[i]; i=i+1;
    }
    // pos: r == sum_{0<= k < N} v[k]
return r;
}
```

```
int sqri (int x) {
    // pre: x>=0
    int a = x, b = x, r = 0;
    // inv: ??
    while (a!=0) {
        if (a%2 != 0) r = r + b;
        a=a/2; b=b*2;
    }
    // pos: r == x-2
    return r;
    }
int sqr2 (int x){
    // pre: x>=0
    int r = 0, i = 0, p = 1;
    // inv: ??
    while (i<x) {
        i = i+1; r=r+p;p=p+2;
    }
    // pos: r == x^2
    return r;
}
int ssearch (int x, int a[], int N){
    // pre: N>0 &鿆
    // forall_{0<k<N-1} a[k-1]<=a[k]
    int p = -1, i = 0;
    // inv: ??
    while (p == -1 && i<N && x >= a[i]) {
        if (a[i] == x) p = i;
        i= i+1;
    }
    // pos: (p == -1 && forall_{0<= k<N} a[k] != x) ||
    // ( (0<= p<N) && x == a[p])
    return p;
}
```

Complete correctness

Partial/Complete correctness

Given $\{P\} S\{Q\}$

Partial correctness
 if $[P$ holds] and [S is executed] then [Q holds]

Complete correctness
if [P holds] and [S is executed] then [Q holds] AND S terminates

Partial/Complete correctness

Given $\{P\} S\{Q\}$

Partial correctness
 if [P holds] and [S is executed] then [Q holds]

Complete correctness
if [P holds] and [S is executed] then [Q holds] AND S terminates

Enough to show the existence of a loop variant

Loop variant

Technique that measures the distance between the current state and the final state.

A loop variant V is an integer expression s.t.

- is positive in the beginning of each round $(c \wedge I \Rightarrow V>0)$
- decreases in every round $\left(c \wedge I \Rightarrow V>V^{\prime}\right)$

```
r=x ;
q=0;
while (y <= r) {
    r = r-y;
    q = q+1;
}
```

- $V=r-y$ is not a good variant
- ...

Loop variant

Technique that measures the distance between the current state and the final state.

A loop variant V is an integer expression s.t.

- is positive in the beginning of each round $(c \wedge I \Rightarrow V>0)$
- decreases in every round $\left(c \wedge I \Rightarrow V>V^{\prime}\right)$

```
r=x ;
q=0;
while (y <= r) {
    r = r-y;
    q = q+1;
}
```

- $V=r-y$ is not a good variant
- $V=r-y+1$ is a good variant

Loop variant

Technique that measures the distance between the current state and the final state.

A loop variant V is an integer expression s.t.

- is positive in the beginning of each round $(c \wedge I \Rightarrow V>0)$
- decreases in every round $\left(c \wedge I \Rightarrow V>V^{\prime}\right)$

```
r=x;
q=0;
while (y <= r) {
    r = r-y;
    q = q+1;
}
```

- $V=r-y$ is not a good variant
- $V=r-y+1$ is a good variant $y \leq r \Rightarrow V>0$ at each round $V>V^{\prime}$ after each round

Exercises

```
int sum(int v[], int N) {
    int i = 0, r = 0;
    while (i!=N) {
        // variant: ???
        r = r + v[i];
        i=i+1;
    }
    return r;
}
```

Ex. 2.6: Find variant above

Ex. 2.7: Find variants of the loops in previous exercises (when searching for invariants)

